How to use first method in Cypress

Best JavaScript code snippet using cypress

faster_rcnn_inception_resnet_v2_keras_feature_extractor.py

Source:faster_rcnn_inception_resnet_v2_keras_feature_extractor.py Github

copy

Full Screen

1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.2#3# Licensed under the Apache License, Version 2.0 (the "License");4# you may not use this file except in compliance with the License.5# You may obtain a copy of the License at6#7#     http://www.apache.org/licenses/LICENSE-2.08#9# Unless required by applicable law or agreed to in writing, software10# distributed under the License is distributed on an "AS IS" BASIS,11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.12# See the License for the specific language governing permissions and13# limitations under the License.14# ==============================================================================15"""Inception Resnet v2 Faster R-CNN implementation in Keras.16See "Inception-v4, Inception-ResNet and the Impact of Residual Connections on17Learning" by Szegedy et al. (https://arxiv.org/abs/1602.07261)18as well as19"Speed/accuracy trade-offs for modern convolutional object detectors" by20Huang et al. (https://arxiv.org/abs/1611.10012)21"""22# Skip pylint for this file because it times out23# pylint: skip-file24import tensorflow as tf25from object_detection.meta_architectures import faster_rcnn_meta_arch26from object_detection.models.keras_models import inception_resnet_v227from object_detection.utils import model_util28from object_detection.utils import variables_helper29class FasterRCNNInceptionResnetV2KerasFeatureExtractor(30    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor):31  """Faster R-CNN with Inception Resnet v2 feature extractor implementation."""32  def __init__(self,33               is_training,34               first_stage_features_stride,35               batch_norm_trainable=False,36               weight_decay=0.0):37    """Constructor.38    Args:39      is_training: See base class.40      first_stage_features_stride: See base class.41      batch_norm_trainable: See base class.42      weight_decay: See base class.43    Raises:44      ValueError: If `first_stage_features_stride` is not 8 or 16.45    """46    if first_stage_features_stride != 8 and first_stage_features_stride != 16:47      raise ValueError('`first_stage_features_stride` must be 8 or 16.')48    super(FasterRCNNInceptionResnetV2KerasFeatureExtractor, self).__init__(49        is_training, first_stage_features_stride, batch_norm_trainable,50        weight_decay)51  def preprocess(self, resized_inputs):52    """Faster R-CNN with Inception Resnet v2 preprocessing.53    Maps pixel values to the range [-1, 1].54    Args:55      resized_inputs: A [batch, height_in, width_in, channels] float32 tensor56        representing a batch of images with values between 0 and 255.0.57    Returns:58      preprocessed_inputs: A [batch, height_out, width_out, channels] float3259        tensor representing a batch of images.60    """61    return (2.0 / 255.0) * resized_inputs - 1.062  def get_proposal_feature_extractor_model(self, name=None):63    """Returns a model that extracts first stage RPN features.64    Extracts features using the first half of the Inception Resnet v2 network.65    We construct the network in `align_feature_maps=True` mode, which means66    that all VALID paddings in the network are changed to SAME padding so that67    the feature maps are aligned.68    Args:69      name: A scope name to construct all variables within.70    Returns:71      A Keras model that takes preprocessed_inputs:72        A [batch, height, width, channels] float32 tensor73        representing a batch of images.74      And returns rpn_feature_map:75        A tensor with shape [batch, height, width, depth]76    """77    with tf.name_scope(name):78      with tf.name_scope('InceptionResnetV2'):79        model = inception_resnet_v2.inception_resnet_v2(80              self._train_batch_norm,81              output_stride=self._first_stage_features_stride,82              align_feature_maps=True,83              weight_decay=self._weight_decay,84              weights=None,85              include_top=False)86        proposal_features = model.get_layer(87            name='block17_20_ac').output88        return tf.keras.Model(89            inputs=model.inputs,90            outputs=proposal_features)91  def get_box_classifier_feature_extractor_model(self, name=None):92    """Returns a model that extracts second stage box classifier features.93    This function reconstructs the "second half" of the Inception ResNet v294    network after the part defined in `get_proposal_feature_extractor_model`.95    Args:96      name: A scope name to construct all variables within.97    Returns:98      A Keras model that takes proposal_feature_maps:99        A 4-D float tensor with shape100        [batch_size * self.max_num_proposals, crop_height, crop_width, depth]101        representing the feature map cropped to each proposal.102      And returns proposal_classifier_features:103        A 4-D float tensor with shape104        [batch_size * self.max_num_proposals, height, width, depth]105        representing box classifier features for each proposal.106    """107    with tf.name_scope(name):108      with tf.name_scope('InceptionResnetV2'):109        model = inception_resnet_v2.inception_resnet_v2(110            self._train_batch_norm,111            output_stride=16,112            align_feature_maps=False,113            weight_decay=self._weight_decay,114            weights=None,115            include_top=False)116        proposal_feature_maps = model.get_layer(117            name='block17_20_ac').output118        proposal_classifier_features = model.get_layer(119            name='conv_7b_ac').output120        return model_util.extract_submodel(121            model=model,122            inputs=proposal_feature_maps,123            outputs=proposal_classifier_features)124  def restore_from_classification_checkpoint_fn(125      self,126      first_stage_feature_extractor_scope,127      second_stage_feature_extractor_scope):128    """Returns a map of variables to load from a foreign checkpoint.129    This uses a hard-coded conversion to load into Keras from a slim-trained130    inception_resnet_v2 checkpoint.131    Note that this overrides the default implementation in132    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor which does not work133    for InceptionResnetV2 checkpoints.134    Args:135      first_stage_feature_extractor_scope: A scope name for the first stage136        feature extractor.137      second_stage_feature_extractor_scope: A scope name for the second stage138        feature extractor.139    Returns:140      A dict mapping variable names (to load from a checkpoint) to variables in141      the model graph.142    """143    keras_to_slim_name_mapping = {144        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d/kernel': 'InceptionResnetV2/Conv2d_1a_3x3/weights',145        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm/beta': 'InceptionResnetV2/Conv2d_1a_3x3/BatchNorm/beta',146        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm/moving_mean': 'InceptionResnetV2/Conv2d_1a_3x3/BatchNorm/moving_mean',147        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm/moving_variance': 'InceptionResnetV2/Conv2d_1a_3x3/BatchNorm/moving_variance',148        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_1/kernel': 'InceptionResnetV2/Conv2d_2a_3x3/weights',149        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_1/beta': 'InceptionResnetV2/Conv2d_2a_3x3/BatchNorm/beta',150        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_1/moving_mean': 'InceptionResnetV2/Conv2d_2a_3x3/BatchNorm/moving_mean',151        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_1/moving_variance': 'InceptionResnetV2/Conv2d_2a_3x3/BatchNorm/moving_variance',152        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_2/kernel': 'InceptionResnetV2/Conv2d_2b_3x3/weights',153        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_2/beta': 'InceptionResnetV2/Conv2d_2b_3x3/BatchNorm/beta',154        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_2/moving_mean': 'InceptionResnetV2/Conv2d_2b_3x3/BatchNorm/moving_mean',155        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_2/moving_variance': 'InceptionResnetV2/Conv2d_2b_3x3/BatchNorm/moving_variance',156        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_3/kernel': 'InceptionResnetV2/Conv2d_3b_1x1/weights',157        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_3/beta': 'InceptionResnetV2/Conv2d_3b_1x1/BatchNorm/beta',158        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_3/moving_mean': 'InceptionResnetV2/Conv2d_3b_1x1/BatchNorm/moving_mean',159        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_3/moving_variance': 'InceptionResnetV2/Conv2d_3b_1x1/BatchNorm/moving_variance',160        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_4/kernel': 'InceptionResnetV2/Conv2d_4a_3x3/weights',161        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_4/beta': 'InceptionResnetV2/Conv2d_4a_3x3/BatchNorm/beta',162        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_4/moving_mean': 'InceptionResnetV2/Conv2d_4a_3x3/BatchNorm/moving_mean',163        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_4/moving_variance': 'InceptionResnetV2/Conv2d_4a_3x3/BatchNorm/moving_variance',164        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_5/kernel': 'InceptionResnetV2/Mixed_5b/Branch_0/Conv2d_1x1/weights',165        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_5/beta': 'InceptionResnetV2/Mixed_5b/Branch_0/Conv2d_1x1/BatchNorm/beta',166        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_5/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',167        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_5/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',168        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_6/kernel': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0a_1x1/weights',169        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_6/beta': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',170        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_6/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',171        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_6/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',172        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_7/kernel': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0b_5x5/weights',173        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_7/beta': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0b_5x5/BatchNorm/beta',174        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_7/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0b_5x5/BatchNorm/moving_mean',175        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_7/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_1/Conv2d_0b_5x5/BatchNorm/moving_variance',176        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_8/kernel': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0a_1x1/weights',177        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_8/beta': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',178        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_8/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',179        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_8/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',180        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_9/kernel': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0b_3x3/weights',181        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_9/beta': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',182        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_9/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',183        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_9/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',184        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_10/kernel': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0c_3x3/weights',185        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_10/beta': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',186        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_10/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',187        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_10/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',188        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_11/kernel': 'InceptionResnetV2/Mixed_5b/Branch_3/Conv2d_0b_1x1/weights',189        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_11/beta': 'InceptionResnetV2/Mixed_5b/Branch_3/Conv2d_0b_1x1/BatchNorm/beta',190        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_11/moving_mean': 'InceptionResnetV2/Mixed_5b/Branch_3/Conv2d_0b_1x1/BatchNorm/moving_mean',191        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_11/moving_variance': 'InceptionResnetV2/Mixed_5b/Branch_3/Conv2d_0b_1x1/BatchNorm/moving_variance',192        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_12/kernel': 'InceptionResnetV2/Repeat/block35_1/Branch_0/Conv2d_1x1/weights',193        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_12/beta': 'InceptionResnetV2/Repeat/block35_1/Branch_0/Conv2d_1x1/BatchNorm/beta',194        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_12/moving_mean': 'InceptionResnetV2/Repeat/block35_1/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',195        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_12/moving_variance': 'InceptionResnetV2/Repeat/block35_1/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',196        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_13/kernel': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0a_1x1/weights',197        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_13/beta': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',198        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_13/moving_mean': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',199        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_13/moving_variance': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',200        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_14/kernel': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0b_3x3/weights',201        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_14/beta': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',202        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_14/moving_mean': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',203        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_14/moving_variance': 'InceptionResnetV2/Repeat/block35_1/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',204        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_15/kernel': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0a_1x1/weights',205        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_15/beta': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',206        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_15/moving_mean': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',207        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_15/moving_variance': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',208        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_16/kernel': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0b_3x3/weights',209        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_16/beta': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',210        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_16/moving_mean': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',211        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_16/moving_variance': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',212        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_17/kernel': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0c_3x3/weights',213        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_17/beta': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',214        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_17/moving_mean': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',215        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_17/moving_variance': 'InceptionResnetV2/Repeat/block35_1/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',216        'FirstStageFeatureExtractor/InceptionResnetV2/block35_1_conv/kernel': 'InceptionResnetV2/Repeat/block35_1/Conv2d_1x1/weights',217        'FirstStageFeatureExtractor/InceptionResnetV2/block35_1_conv/bias': 'InceptionResnetV2/Repeat/block35_1/Conv2d_1x1/biases',218        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_18/kernel': 'InceptionResnetV2/Repeat/block35_2/Branch_0/Conv2d_1x1/weights',219        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_18/beta': 'InceptionResnetV2/Repeat/block35_2/Branch_0/Conv2d_1x1/BatchNorm/beta',220        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_18/moving_mean': 'InceptionResnetV2/Repeat/block35_2/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',221        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_18/moving_variance': 'InceptionResnetV2/Repeat/block35_2/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',222        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_19/kernel': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0a_1x1/weights',223        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_19/beta': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',224        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_19/moving_mean': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',225        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_19/moving_variance': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',226        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_20/kernel': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0b_3x3/weights',227        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_20/beta': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',228        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_20/moving_mean': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',229        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_20/moving_variance': 'InceptionResnetV2/Repeat/block35_2/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',230        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_21/kernel': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0a_1x1/weights',231        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_21/beta': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',232        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_21/moving_mean': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',233        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_21/moving_variance': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',234        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_22/kernel': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0b_3x3/weights',235        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_22/beta': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',236        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_22/moving_mean': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',237        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_22/moving_variance': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',238        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_23/kernel': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0c_3x3/weights',239        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_23/beta': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',240        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_23/moving_mean': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',241        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_23/moving_variance': 'InceptionResnetV2/Repeat/block35_2/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',242        'FirstStageFeatureExtractor/InceptionResnetV2/block35_2_conv/kernel': 'InceptionResnetV2/Repeat/block35_2/Conv2d_1x1/weights',243        'FirstStageFeatureExtractor/InceptionResnetV2/block35_2_conv/bias': 'InceptionResnetV2/Repeat/block35_2/Conv2d_1x1/biases',244        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_24/kernel': 'InceptionResnetV2/Repeat/block35_3/Branch_0/Conv2d_1x1/weights',245        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_24/beta': 'InceptionResnetV2/Repeat/block35_3/Branch_0/Conv2d_1x1/BatchNorm/beta',246        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_24/moving_mean': 'InceptionResnetV2/Repeat/block35_3/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',247        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_24/moving_variance': 'InceptionResnetV2/Repeat/block35_3/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',248        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_25/kernel': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0a_1x1/weights',249        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_25/beta': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',250        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_25/moving_mean': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',251        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_25/moving_variance': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',252        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_26/kernel': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0b_3x3/weights',253        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_26/beta': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',254        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_26/moving_mean': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',255        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_26/moving_variance': 'InceptionResnetV2/Repeat/block35_3/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',256        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_27/kernel': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0a_1x1/weights',257        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_27/beta': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',258        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_27/moving_mean': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',259        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_27/moving_variance': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',260        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_28/kernel': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0b_3x3/weights',261        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_28/beta': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',262        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_28/moving_mean': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',263        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_28/moving_variance': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',264        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_29/kernel': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0c_3x3/weights',265        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_29/beta': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',266        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_29/moving_mean': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',267        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_29/moving_variance': 'InceptionResnetV2/Repeat/block35_3/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',268        'FirstStageFeatureExtractor/InceptionResnetV2/block35_3_conv/kernel': 'InceptionResnetV2/Repeat/block35_3/Conv2d_1x1/weights',269        'FirstStageFeatureExtractor/InceptionResnetV2/block35_3_conv/bias': 'InceptionResnetV2/Repeat/block35_3/Conv2d_1x1/biases',270        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_30/kernel': 'InceptionResnetV2/Repeat/block35_4/Branch_0/Conv2d_1x1/weights',271        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_30/beta': 'InceptionResnetV2/Repeat/block35_4/Branch_0/Conv2d_1x1/BatchNorm/beta',272        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_30/moving_mean': 'InceptionResnetV2/Repeat/block35_4/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',273        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_30/moving_variance': 'InceptionResnetV2/Repeat/block35_4/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',274        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_31/kernel': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0a_1x1/weights',275        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_31/beta': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',276        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_31/moving_mean': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',277        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_31/moving_variance': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',278        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_32/kernel': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0b_3x3/weights',279        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_32/beta': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',280        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_32/moving_mean': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',281        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_32/moving_variance': 'InceptionResnetV2/Repeat/block35_4/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',282        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_33/kernel': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0a_1x1/weights',283        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_33/beta': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',284        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_33/moving_mean': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',285        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_33/moving_variance': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',286        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_34/kernel': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0b_3x3/weights',287        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_34/beta': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',288        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_34/moving_mean': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',289        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_34/moving_variance': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',290        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_35/kernel': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0c_3x3/weights',291        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_35/beta': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',292        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_35/moving_mean': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',293        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_35/moving_variance': 'InceptionResnetV2/Repeat/block35_4/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',294        'FirstStageFeatureExtractor/InceptionResnetV2/block35_4_conv/kernel': 'InceptionResnetV2/Repeat/block35_4/Conv2d_1x1/weights',295        'FirstStageFeatureExtractor/InceptionResnetV2/block35_4_conv/bias': 'InceptionResnetV2/Repeat/block35_4/Conv2d_1x1/biases',296        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_36/kernel': 'InceptionResnetV2/Repeat/block35_5/Branch_0/Conv2d_1x1/weights',297        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_36/beta': 'InceptionResnetV2/Repeat/block35_5/Branch_0/Conv2d_1x1/BatchNorm/beta',298        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_36/moving_mean': 'InceptionResnetV2/Repeat/block35_5/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',299        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_36/moving_variance': 'InceptionResnetV2/Repeat/block35_5/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',300        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_37/kernel': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0a_1x1/weights',301        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_37/beta': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',302        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_37/moving_mean': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',303        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_37/moving_variance': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',304        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_38/kernel': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0b_3x3/weights',305        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_38/beta': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',306        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_38/moving_mean': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',307        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_38/moving_variance': 'InceptionResnetV2/Repeat/block35_5/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',308        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_39/kernel': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0a_1x1/weights',309        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_39/beta': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',310        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_39/moving_mean': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',311        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_39/moving_variance': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',312        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_40/kernel': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0b_3x3/weights',313        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_40/beta': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',314        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_40/moving_mean': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',315        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_40/moving_variance': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',316        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_41/kernel': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0c_3x3/weights',317        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_41/beta': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',318        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_41/moving_mean': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',319        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_41/moving_variance': 'InceptionResnetV2/Repeat/block35_5/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',320        'FirstStageFeatureExtractor/InceptionResnetV2/block35_5_conv/kernel': 'InceptionResnetV2/Repeat/block35_5/Conv2d_1x1/weights',321        'FirstStageFeatureExtractor/InceptionResnetV2/block35_5_conv/bias': 'InceptionResnetV2/Repeat/block35_5/Conv2d_1x1/biases',322        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_42/kernel': 'InceptionResnetV2/Repeat/block35_6/Branch_0/Conv2d_1x1/weights',323        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_42/beta': 'InceptionResnetV2/Repeat/block35_6/Branch_0/Conv2d_1x1/BatchNorm/beta',324        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_42/moving_mean': 'InceptionResnetV2/Repeat/block35_6/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',325        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_42/moving_variance': 'InceptionResnetV2/Repeat/block35_6/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',326        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_43/kernel': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0a_1x1/weights',327        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_43/beta': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',328        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_43/moving_mean': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',329        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_43/moving_variance': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',330        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_44/kernel': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0b_3x3/weights',331        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_44/beta': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',332        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_44/moving_mean': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',333        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_44/moving_variance': 'InceptionResnetV2/Repeat/block35_6/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',334        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_45/kernel': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0a_1x1/weights',335        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_45/beta': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',336        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_45/moving_mean': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',337        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_45/moving_variance': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',338        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_46/kernel': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0b_3x3/weights',339        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_46/beta': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',340        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_46/moving_mean': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',341        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_46/moving_variance': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',342        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_47/kernel': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0c_3x3/weights',343        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_47/beta': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',344        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_47/moving_mean': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',345        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_47/moving_variance': 'InceptionResnetV2/Repeat/block35_6/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',346        'FirstStageFeatureExtractor/InceptionResnetV2/block35_6_conv/kernel': 'InceptionResnetV2/Repeat/block35_6/Conv2d_1x1/weights',347        'FirstStageFeatureExtractor/InceptionResnetV2/block35_6_conv/bias': 'InceptionResnetV2/Repeat/block35_6/Conv2d_1x1/biases',348        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_48/kernel': 'InceptionResnetV2/Repeat/block35_7/Branch_0/Conv2d_1x1/weights',349        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_48/beta': 'InceptionResnetV2/Repeat/block35_7/Branch_0/Conv2d_1x1/BatchNorm/beta',350        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_48/moving_mean': 'InceptionResnetV2/Repeat/block35_7/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',351        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_48/moving_variance': 'InceptionResnetV2/Repeat/block35_7/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',352        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_49/kernel': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0a_1x1/weights',353        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_49/beta': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',354        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_49/moving_mean': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',355        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_49/moving_variance': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',356        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_50/kernel': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0b_3x3/weights',357        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_50/beta': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',358        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_50/moving_mean': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',359        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_50/moving_variance': 'InceptionResnetV2/Repeat/block35_7/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',360        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_51/kernel': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0a_1x1/weights',361        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_51/beta': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',362        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_51/moving_mean': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',363        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_51/moving_variance': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',364        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_52/kernel': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0b_3x3/weights',365        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_52/beta': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',366        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_52/moving_mean': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',367        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_52/moving_variance': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',368        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_53/kernel': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0c_3x3/weights',369        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_53/beta': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',370        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_53/moving_mean': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',371        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_53/moving_variance': 'InceptionResnetV2/Repeat/block35_7/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',372        'FirstStageFeatureExtractor/InceptionResnetV2/block35_7_conv/kernel': 'InceptionResnetV2/Repeat/block35_7/Conv2d_1x1/weights',373        'FirstStageFeatureExtractor/InceptionResnetV2/block35_7_conv/bias': 'InceptionResnetV2/Repeat/block35_7/Conv2d_1x1/biases',374        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_54/kernel': 'InceptionResnetV2/Repeat/block35_8/Branch_0/Conv2d_1x1/weights',375        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_54/beta': 'InceptionResnetV2/Repeat/block35_8/Branch_0/Conv2d_1x1/BatchNorm/beta',376        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_54/moving_mean': 'InceptionResnetV2/Repeat/block35_8/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',377        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_54/moving_variance': 'InceptionResnetV2/Repeat/block35_8/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',378        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_55/kernel': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0a_1x1/weights',379        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_55/beta': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',380        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_55/moving_mean': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',381        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_55/moving_variance': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',382        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_56/kernel': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0b_3x3/weights',383        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_56/beta': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',384        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_56/moving_mean': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',385        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_56/moving_variance': 'InceptionResnetV2/Repeat/block35_8/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',386        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_57/kernel': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0a_1x1/weights',387        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_57/beta': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',388        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_57/moving_mean': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',389        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_57/moving_variance': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',390        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_58/kernel': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0b_3x3/weights',391        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_58/beta': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',392        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_58/moving_mean': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',393        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_58/moving_variance': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',394        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_59/kernel': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0c_3x3/weights',395        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_59/beta': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',396        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_59/moving_mean': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',397        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_59/moving_variance': 'InceptionResnetV2/Repeat/block35_8/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',398        'FirstStageFeatureExtractor/InceptionResnetV2/block35_8_conv/kernel': 'InceptionResnetV2/Repeat/block35_8/Conv2d_1x1/weights',399        'FirstStageFeatureExtractor/InceptionResnetV2/block35_8_conv/bias': 'InceptionResnetV2/Repeat/block35_8/Conv2d_1x1/biases',400        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_60/kernel': 'InceptionResnetV2/Repeat/block35_9/Branch_0/Conv2d_1x1/weights',401        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_60/beta': 'InceptionResnetV2/Repeat/block35_9/Branch_0/Conv2d_1x1/BatchNorm/beta',402        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_60/moving_mean': 'InceptionResnetV2/Repeat/block35_9/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',403        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_60/moving_variance': 'InceptionResnetV2/Repeat/block35_9/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',404        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_61/kernel': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0a_1x1/weights',405        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_61/beta': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',406        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_61/moving_mean': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',407        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_61/moving_variance': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',408        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_62/kernel': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0b_3x3/weights',409        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_62/beta': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',410        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_62/moving_mean': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',411        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_62/moving_variance': 'InceptionResnetV2/Repeat/block35_9/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',412        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_63/kernel': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0a_1x1/weights',413        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_63/beta': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',414        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_63/moving_mean': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',415        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_63/moving_variance': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',416        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_64/kernel': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0b_3x3/weights',417        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_64/beta': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',418        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_64/moving_mean': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',419        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_64/moving_variance': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',420        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_65/kernel': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0c_3x3/weights',421        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_65/beta': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',422        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_65/moving_mean': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',423        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_65/moving_variance': 'InceptionResnetV2/Repeat/block35_9/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',424        'FirstStageFeatureExtractor/InceptionResnetV2/block35_9_conv/kernel': 'InceptionResnetV2/Repeat/block35_9/Conv2d_1x1/weights',425        'FirstStageFeatureExtractor/InceptionResnetV2/block35_9_conv/bias': 'InceptionResnetV2/Repeat/block35_9/Conv2d_1x1/biases',426        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_66/kernel': 'InceptionResnetV2/Repeat/block35_10/Branch_0/Conv2d_1x1/weights',427        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_66/beta': 'InceptionResnetV2/Repeat/block35_10/Branch_0/Conv2d_1x1/BatchNorm/beta',428        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_66/moving_mean': 'InceptionResnetV2/Repeat/block35_10/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',429        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_66/moving_variance': 'InceptionResnetV2/Repeat/block35_10/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',430        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_67/kernel': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0a_1x1/weights',431        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_67/beta': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',432        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_67/moving_mean': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',433        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_67/moving_variance': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',434        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_68/kernel': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0b_3x3/weights',435        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_68/beta': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',436        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_68/moving_mean': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',437        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_68/moving_variance': 'InceptionResnetV2/Repeat/block35_10/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',438        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_69/kernel': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0a_1x1/weights',439        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_69/beta': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',440        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_69/moving_mean': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',441        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_69/moving_variance': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',442        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_70/kernel': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0b_3x3/weights',443        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_70/beta': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',444        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_70/moving_mean': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',445        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_70/moving_variance': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',446        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_71/kernel': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0c_3x3/weights',447        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_71/beta': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0c_3x3/BatchNorm/beta',448        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_71/moving_mean': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_mean',449        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_71/moving_variance': 'InceptionResnetV2/Repeat/block35_10/Branch_2/Conv2d_0c_3x3/BatchNorm/moving_variance',450        'FirstStageFeatureExtractor/InceptionResnetV2/block35_10_conv/kernel': 'InceptionResnetV2/Repeat/block35_10/Conv2d_1x1/weights',451        'FirstStageFeatureExtractor/InceptionResnetV2/block35_10_conv/bias': 'InceptionResnetV2/Repeat/block35_10/Conv2d_1x1/biases',452        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_72/kernel': 'InceptionResnetV2/Mixed_6a/Branch_0/Conv2d_1a_3x3/weights',453        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_72/beta': 'InceptionResnetV2/Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm/beta',454        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_72/moving_mean': 'InceptionResnetV2/Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm/moving_mean',455        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_72/moving_variance': 'InceptionResnetV2/Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm/moving_variance',456        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_73/kernel': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0a_1x1/weights',457        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_73/beta': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',458        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_73/moving_mean': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',459        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_73/moving_variance': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',460        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_74/kernel': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0b_3x3/weights',461        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_74/beta': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm/beta',462        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_74/moving_mean': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_mean',463        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_74/moving_variance': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm/moving_variance',464        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_75/kernel': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_1a_3x3/weights',465        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_75/beta': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm/beta',466        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_75/moving_mean': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm/moving_mean',467        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_75/moving_variance': 'InceptionResnetV2/Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm/moving_variance',468        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_76/kernel': 'InceptionResnetV2/Repeat_1/block17_1/Branch_0/Conv2d_1x1/weights',469        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_76/beta': 'InceptionResnetV2/Repeat_1/block17_1/Branch_0/Conv2d_1x1/BatchNorm/beta',470        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_76/moving_mean': 'InceptionResnetV2/Repeat_1/block17_1/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',471        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_76/moving_variance': 'InceptionResnetV2/Repeat_1/block17_1/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',472        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_77/kernel': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0a_1x1/weights',473        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_77/beta': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',474        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_77/moving_mean': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',475        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_77/moving_variance': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',476        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_78/kernel': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0b_1x7/weights',477        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_78/beta': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',478        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_78/moving_mean': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',479        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_78/moving_variance': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',480        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_79/kernel': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0c_7x1/weights',481        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_79/beta': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',482        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_79/moving_mean': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',483        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_79/moving_variance': 'InceptionResnetV2/Repeat_1/block17_1/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',484        'FirstStageFeatureExtractor/InceptionResnetV2/block17_1_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_1/Conv2d_1x1/weights',485        'FirstStageFeatureExtractor/InceptionResnetV2/block17_1_conv/bias': 'InceptionResnetV2/Repeat_1/block17_1/Conv2d_1x1/biases',486        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_80/kernel': 'InceptionResnetV2/Repeat_1/block17_2/Branch_0/Conv2d_1x1/weights',487        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_80/beta': 'InceptionResnetV2/Repeat_1/block17_2/Branch_0/Conv2d_1x1/BatchNorm/beta',488        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_80/moving_mean': 'InceptionResnetV2/Repeat_1/block17_2/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',489        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_80/moving_variance': 'InceptionResnetV2/Repeat_1/block17_2/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',490        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_81/kernel': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0a_1x1/weights',491        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_81/beta': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',492        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_81/moving_mean': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',493        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_81/moving_variance': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',494        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_82/kernel': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0b_1x7/weights',495        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_82/beta': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',496        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_82/moving_mean': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',497        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_82/moving_variance': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',498        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_83/kernel': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0c_7x1/weights',499        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_83/beta': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',500        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_83/moving_mean': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',501        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_83/moving_variance': 'InceptionResnetV2/Repeat_1/block17_2/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',502        'FirstStageFeatureExtractor/InceptionResnetV2/block17_2_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_2/Conv2d_1x1/weights',503        'FirstStageFeatureExtractor/InceptionResnetV2/block17_2_conv/bias': 'InceptionResnetV2/Repeat_1/block17_2/Conv2d_1x1/biases',504        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_84/kernel': 'InceptionResnetV2/Repeat_1/block17_3/Branch_0/Conv2d_1x1/weights',505        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_84/beta': 'InceptionResnetV2/Repeat_1/block17_3/Branch_0/Conv2d_1x1/BatchNorm/beta',506        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_84/moving_mean': 'InceptionResnetV2/Repeat_1/block17_3/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',507        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_84/moving_variance': 'InceptionResnetV2/Repeat_1/block17_3/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',508        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_85/kernel': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0a_1x1/weights',509        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_85/beta': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',510        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_85/moving_mean': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',511        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_85/moving_variance': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',512        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_86/kernel': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0b_1x7/weights',513        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_86/beta': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',514        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_86/moving_mean': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',515        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_86/moving_variance': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',516        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_87/kernel': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0c_7x1/weights',517        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_87/beta': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',518        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_87/moving_mean': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',519        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_87/moving_variance': 'InceptionResnetV2/Repeat_1/block17_3/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',520        'FirstStageFeatureExtractor/InceptionResnetV2/block17_3_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_3/Conv2d_1x1/weights',521        'FirstStageFeatureExtractor/InceptionResnetV2/block17_3_conv/bias': 'InceptionResnetV2/Repeat_1/block17_3/Conv2d_1x1/biases',522        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_88/kernel': 'InceptionResnetV2/Repeat_1/block17_4/Branch_0/Conv2d_1x1/weights',523        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_88/beta': 'InceptionResnetV2/Repeat_1/block17_4/Branch_0/Conv2d_1x1/BatchNorm/beta',524        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_88/moving_mean': 'InceptionResnetV2/Repeat_1/block17_4/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',525        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_88/moving_variance': 'InceptionResnetV2/Repeat_1/block17_4/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',526        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_89/kernel': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0a_1x1/weights',527        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_89/beta': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',528        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_89/moving_mean': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',529        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_89/moving_variance': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',530        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_90/kernel': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0b_1x7/weights',531        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_90/beta': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',532        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_90/moving_mean': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',533        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_90/moving_variance': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',534        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_91/kernel': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0c_7x1/weights',535        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_91/beta': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',536        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_91/moving_mean': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',537        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_91/moving_variance': 'InceptionResnetV2/Repeat_1/block17_4/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',538        'FirstStageFeatureExtractor/InceptionResnetV2/block17_4_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_4/Conv2d_1x1/weights',539        'FirstStageFeatureExtractor/InceptionResnetV2/block17_4_conv/bias': 'InceptionResnetV2/Repeat_1/block17_4/Conv2d_1x1/biases',540        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_92/kernel': 'InceptionResnetV2/Repeat_1/block17_5/Branch_0/Conv2d_1x1/weights',541        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_92/beta': 'InceptionResnetV2/Repeat_1/block17_5/Branch_0/Conv2d_1x1/BatchNorm/beta',542        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_92/moving_mean': 'InceptionResnetV2/Repeat_1/block17_5/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',543        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_92/moving_variance': 'InceptionResnetV2/Repeat_1/block17_5/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',544        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_93/kernel': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0a_1x1/weights',545        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_93/beta': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',546        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_93/moving_mean': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',547        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_93/moving_variance': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',548        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_94/kernel': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0b_1x7/weights',549        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_94/beta': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',550        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_94/moving_mean': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',551        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_94/moving_variance': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',552        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_95/kernel': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0c_7x1/weights',553        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_95/beta': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',554        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_95/moving_mean': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',555        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_95/moving_variance': 'InceptionResnetV2/Repeat_1/block17_5/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',556        'FirstStageFeatureExtractor/InceptionResnetV2/block17_5_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_5/Conv2d_1x1/weights',557        'FirstStageFeatureExtractor/InceptionResnetV2/block17_5_conv/bias': 'InceptionResnetV2/Repeat_1/block17_5/Conv2d_1x1/biases',558        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_96/kernel': 'InceptionResnetV2/Repeat_1/block17_6/Branch_0/Conv2d_1x1/weights',559        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_96/beta': 'InceptionResnetV2/Repeat_1/block17_6/Branch_0/Conv2d_1x1/BatchNorm/beta',560        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_96/moving_mean': 'InceptionResnetV2/Repeat_1/block17_6/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',561        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_96/moving_variance': 'InceptionResnetV2/Repeat_1/block17_6/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',562        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_97/kernel': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0a_1x1/weights',563        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_97/beta': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',564        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_97/moving_mean': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',565        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_97/moving_variance': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',566        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_98/kernel': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0b_1x7/weights',567        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_98/beta': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',568        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_98/moving_mean': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',569        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_98/moving_variance': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',570        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_99/kernel': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0c_7x1/weights',571        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_99/beta': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',572        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_99/moving_mean': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',573        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_99/moving_variance': 'InceptionResnetV2/Repeat_1/block17_6/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',574        'FirstStageFeatureExtractor/InceptionResnetV2/block17_6_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_6/Conv2d_1x1/weights',575        'FirstStageFeatureExtractor/InceptionResnetV2/block17_6_conv/bias': 'InceptionResnetV2/Repeat_1/block17_6/Conv2d_1x1/biases',576        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_100/kernel': 'InceptionResnetV2/Repeat_1/block17_7/Branch_0/Conv2d_1x1/weights',577        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_100/beta': 'InceptionResnetV2/Repeat_1/block17_7/Branch_0/Conv2d_1x1/BatchNorm/beta',578        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_100/moving_mean': 'InceptionResnetV2/Repeat_1/block17_7/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',579        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_100/moving_variance': 'InceptionResnetV2/Repeat_1/block17_7/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',580        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_101/kernel': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0a_1x1/weights',581        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_101/beta': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',582        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_101/moving_mean': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',583        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_101/moving_variance': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',584        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_102/kernel': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0b_1x7/weights',585        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_102/beta': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',586        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_102/moving_mean': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',587        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_102/moving_variance': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',588        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_103/kernel': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0c_7x1/weights',589        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_103/beta': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',590        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_103/moving_mean': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',591        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_103/moving_variance': 'InceptionResnetV2/Repeat_1/block17_7/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',592        'FirstStageFeatureExtractor/InceptionResnetV2/block17_7_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_7/Conv2d_1x1/weights',593        'FirstStageFeatureExtractor/InceptionResnetV2/block17_7_conv/bias': 'InceptionResnetV2/Repeat_1/block17_7/Conv2d_1x1/biases',594        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_104/kernel': 'InceptionResnetV2/Repeat_1/block17_8/Branch_0/Conv2d_1x1/weights',595        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_104/beta': 'InceptionResnetV2/Repeat_1/block17_8/Branch_0/Conv2d_1x1/BatchNorm/beta',596        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_104/moving_mean': 'InceptionResnetV2/Repeat_1/block17_8/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',597        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_104/moving_variance': 'InceptionResnetV2/Repeat_1/block17_8/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',598        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_105/kernel': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0a_1x1/weights',599        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_105/beta': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',600        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_105/moving_mean': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',601        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_105/moving_variance': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',602        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_106/kernel': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0b_1x7/weights',603        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_106/beta': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',604        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_106/moving_mean': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',605        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_106/moving_variance': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',606        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_107/kernel': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0c_7x1/weights',607        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_107/beta': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',608        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_107/moving_mean': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',609        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_107/moving_variance': 'InceptionResnetV2/Repeat_1/block17_8/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',610        'FirstStageFeatureExtractor/InceptionResnetV2/block17_8_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_8/Conv2d_1x1/weights',611        'FirstStageFeatureExtractor/InceptionResnetV2/block17_8_conv/bias': 'InceptionResnetV2/Repeat_1/block17_8/Conv2d_1x1/biases',612        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_108/kernel': 'InceptionResnetV2/Repeat_1/block17_9/Branch_0/Conv2d_1x1/weights',613        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_108/beta': 'InceptionResnetV2/Repeat_1/block17_9/Branch_0/Conv2d_1x1/BatchNorm/beta',614        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_108/moving_mean': 'InceptionResnetV2/Repeat_1/block17_9/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',615        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_108/moving_variance': 'InceptionResnetV2/Repeat_1/block17_9/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',616        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_109/kernel': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0a_1x1/weights',617        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_109/beta': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',618        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_109/moving_mean': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',619        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_109/moving_variance': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',620        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_110/kernel': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0b_1x7/weights',621        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_110/beta': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',622        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_110/moving_mean': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',623        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_110/moving_variance': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',624        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_111/kernel': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0c_7x1/weights',625        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_111/beta': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',626        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_111/moving_mean': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',627        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_111/moving_variance': 'InceptionResnetV2/Repeat_1/block17_9/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',628        'FirstStageFeatureExtractor/InceptionResnetV2/block17_9_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_9/Conv2d_1x1/weights',629        'FirstStageFeatureExtractor/InceptionResnetV2/block17_9_conv/bias': 'InceptionResnetV2/Repeat_1/block17_9/Conv2d_1x1/biases',630        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_112/kernel': 'InceptionResnetV2/Repeat_1/block17_10/Branch_0/Conv2d_1x1/weights',631        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_112/beta': 'InceptionResnetV2/Repeat_1/block17_10/Branch_0/Conv2d_1x1/BatchNorm/beta',632        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_112/moving_mean': 'InceptionResnetV2/Repeat_1/block17_10/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',633        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_112/moving_variance': 'InceptionResnetV2/Repeat_1/block17_10/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',634        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_113/kernel': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0a_1x1/weights',635        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_113/beta': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',636        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_113/moving_mean': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',637        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_113/moving_variance': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',638        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_114/kernel': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0b_1x7/weights',639        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_114/beta': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',640        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_114/moving_mean': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',641        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_114/moving_variance': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',642        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_115/kernel': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0c_7x1/weights',643        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_115/beta': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',644        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_115/moving_mean': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',645        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_115/moving_variance': 'InceptionResnetV2/Repeat_1/block17_10/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',646        'FirstStageFeatureExtractor/InceptionResnetV2/block17_10_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_10/Conv2d_1x1/weights',647        'FirstStageFeatureExtractor/InceptionResnetV2/block17_10_conv/bias': 'InceptionResnetV2/Repeat_1/block17_10/Conv2d_1x1/biases',648        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_116/kernel': 'InceptionResnetV2/Repeat_1/block17_11/Branch_0/Conv2d_1x1/weights',649        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_116/beta': 'InceptionResnetV2/Repeat_1/block17_11/Branch_0/Conv2d_1x1/BatchNorm/beta',650        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_116/moving_mean': 'InceptionResnetV2/Repeat_1/block17_11/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',651        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_116/moving_variance': 'InceptionResnetV2/Repeat_1/block17_11/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',652        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_117/kernel': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0a_1x1/weights',653        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_117/beta': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',654        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_117/moving_mean': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',655        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_117/moving_variance': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',656        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_118/kernel': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0b_1x7/weights',657        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_118/beta': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',658        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_118/moving_mean': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',659        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_118/moving_variance': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',660        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_119/kernel': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0c_7x1/weights',661        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_119/beta': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',662        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_119/moving_mean': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',663        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_119/moving_variance': 'InceptionResnetV2/Repeat_1/block17_11/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',664        'FirstStageFeatureExtractor/InceptionResnetV2/block17_11_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_11/Conv2d_1x1/weights',665        'FirstStageFeatureExtractor/InceptionResnetV2/block17_11_conv/bias': 'InceptionResnetV2/Repeat_1/block17_11/Conv2d_1x1/biases',666        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_120/kernel': 'InceptionResnetV2/Repeat_1/block17_12/Branch_0/Conv2d_1x1/weights',667        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_120/beta': 'InceptionResnetV2/Repeat_1/block17_12/Branch_0/Conv2d_1x1/BatchNorm/beta',668        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_120/moving_mean': 'InceptionResnetV2/Repeat_1/block17_12/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',669        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_120/moving_variance': 'InceptionResnetV2/Repeat_1/block17_12/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',670        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_121/kernel': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0a_1x1/weights',671        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_121/beta': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',672        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_121/moving_mean': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',673        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_121/moving_variance': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',674        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_122/kernel': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0b_1x7/weights',675        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_122/beta': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',676        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_122/moving_mean': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',677        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_122/moving_variance': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',678        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_123/kernel': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0c_7x1/weights',679        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_123/beta': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',680        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_123/moving_mean': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',681        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_123/moving_variance': 'InceptionResnetV2/Repeat_1/block17_12/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',682        'FirstStageFeatureExtractor/InceptionResnetV2/block17_12_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_12/Conv2d_1x1/weights',683        'FirstStageFeatureExtractor/InceptionResnetV2/block17_12_conv/bias': 'InceptionResnetV2/Repeat_1/block17_12/Conv2d_1x1/biases',684        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_124/kernel': 'InceptionResnetV2/Repeat_1/block17_13/Branch_0/Conv2d_1x1/weights',685        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_124/beta': 'InceptionResnetV2/Repeat_1/block17_13/Branch_0/Conv2d_1x1/BatchNorm/beta',686        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_124/moving_mean': 'InceptionResnetV2/Repeat_1/block17_13/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',687        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_124/moving_variance': 'InceptionResnetV2/Repeat_1/block17_13/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',688        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_125/kernel': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0a_1x1/weights',689        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_125/beta': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',690        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_125/moving_mean': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',691        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_125/moving_variance': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',692        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_126/kernel': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0b_1x7/weights',693        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_126/beta': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',694        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_126/moving_mean': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',695        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_126/moving_variance': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',696        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_127/kernel': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0c_7x1/weights',697        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_127/beta': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',698        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_127/moving_mean': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',699        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_127/moving_variance': 'InceptionResnetV2/Repeat_1/block17_13/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',700        'FirstStageFeatureExtractor/InceptionResnetV2/block17_13_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_13/Conv2d_1x1/weights',701        'FirstStageFeatureExtractor/InceptionResnetV2/block17_13_conv/bias': 'InceptionResnetV2/Repeat_1/block17_13/Conv2d_1x1/biases',702        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_128/kernel': 'InceptionResnetV2/Repeat_1/block17_14/Branch_0/Conv2d_1x1/weights',703        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_128/beta': 'InceptionResnetV2/Repeat_1/block17_14/Branch_0/Conv2d_1x1/BatchNorm/beta',704        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_128/moving_mean': 'InceptionResnetV2/Repeat_1/block17_14/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',705        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_128/moving_variance': 'InceptionResnetV2/Repeat_1/block17_14/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',706        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_129/kernel': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0a_1x1/weights',707        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_129/beta': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',708        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_129/moving_mean': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',709        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_129/moving_variance': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',710        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_130/kernel': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0b_1x7/weights',711        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_130/beta': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',712        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_130/moving_mean': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',713        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_130/moving_variance': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',714        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_131/kernel': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0c_7x1/weights',715        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_131/beta': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',716        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_131/moving_mean': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',717        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_131/moving_variance': 'InceptionResnetV2/Repeat_1/block17_14/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',718        'FirstStageFeatureExtractor/InceptionResnetV2/block17_14_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_14/Conv2d_1x1/weights',719        'FirstStageFeatureExtractor/InceptionResnetV2/block17_14_conv/bias': 'InceptionResnetV2/Repeat_1/block17_14/Conv2d_1x1/biases',720        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_132/kernel': 'InceptionResnetV2/Repeat_1/block17_15/Branch_0/Conv2d_1x1/weights',721        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_132/beta': 'InceptionResnetV2/Repeat_1/block17_15/Branch_0/Conv2d_1x1/BatchNorm/beta',722        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_132/moving_mean': 'InceptionResnetV2/Repeat_1/block17_15/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',723        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_132/moving_variance': 'InceptionResnetV2/Repeat_1/block17_15/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',724        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_133/kernel': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0a_1x1/weights',725        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_133/beta': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',726        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_133/moving_mean': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',727        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_133/moving_variance': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',728        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_134/kernel': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0b_1x7/weights',729        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_134/beta': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',730        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_134/moving_mean': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',731        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_134/moving_variance': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',732        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_135/kernel': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0c_7x1/weights',733        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_135/beta': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',734        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_135/moving_mean': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',735        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_135/moving_variance': 'InceptionResnetV2/Repeat_1/block17_15/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',736        'FirstStageFeatureExtractor/InceptionResnetV2/block17_15_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_15/Conv2d_1x1/weights',737        'FirstStageFeatureExtractor/InceptionResnetV2/block17_15_conv/bias': 'InceptionResnetV2/Repeat_1/block17_15/Conv2d_1x1/biases',738        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_136/kernel': 'InceptionResnetV2/Repeat_1/block17_16/Branch_0/Conv2d_1x1/weights',739        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_136/beta': 'InceptionResnetV2/Repeat_1/block17_16/Branch_0/Conv2d_1x1/BatchNorm/beta',740        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_136/moving_mean': 'InceptionResnetV2/Repeat_1/block17_16/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',741        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_136/moving_variance': 'InceptionResnetV2/Repeat_1/block17_16/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',742        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_137/kernel': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0a_1x1/weights',743        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_137/beta': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',744        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_137/moving_mean': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',745        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_137/moving_variance': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',746        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_138/kernel': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0b_1x7/weights',747        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_138/beta': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',748        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_138/moving_mean': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',749        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_138/moving_variance': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',750        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_139/kernel': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0c_7x1/weights',751        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_139/beta': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',752        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_139/moving_mean': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',753        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_139/moving_variance': 'InceptionResnetV2/Repeat_1/block17_16/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',754        'FirstStageFeatureExtractor/InceptionResnetV2/block17_16_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_16/Conv2d_1x1/weights',755        'FirstStageFeatureExtractor/InceptionResnetV2/block17_16_conv/bias': 'InceptionResnetV2/Repeat_1/block17_16/Conv2d_1x1/biases',756        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_140/kernel': 'InceptionResnetV2/Repeat_1/block17_17/Branch_0/Conv2d_1x1/weights',757        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_140/beta': 'InceptionResnetV2/Repeat_1/block17_17/Branch_0/Conv2d_1x1/BatchNorm/beta',758        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_140/moving_mean': 'InceptionResnetV2/Repeat_1/block17_17/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',759        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_140/moving_variance': 'InceptionResnetV2/Repeat_1/block17_17/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',760        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_141/kernel': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0a_1x1/weights',761        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_141/beta': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',762        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_141/moving_mean': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',763        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_141/moving_variance': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',764        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_142/kernel': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0b_1x7/weights',765        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_142/beta': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',766        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_142/moving_mean': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',767        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_142/moving_variance': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',768        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_143/kernel': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0c_7x1/weights',769        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_143/beta': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',770        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_143/moving_mean': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',771        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_143/moving_variance': 'InceptionResnetV2/Repeat_1/block17_17/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',772        'FirstStageFeatureExtractor/InceptionResnetV2/block17_17_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_17/Conv2d_1x1/weights',773        'FirstStageFeatureExtractor/InceptionResnetV2/block17_17_conv/bias': 'InceptionResnetV2/Repeat_1/block17_17/Conv2d_1x1/biases',774        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_144/kernel': 'InceptionResnetV2/Repeat_1/block17_18/Branch_0/Conv2d_1x1/weights',775        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_144/beta': 'InceptionResnetV2/Repeat_1/block17_18/Branch_0/Conv2d_1x1/BatchNorm/beta',776        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_144/moving_mean': 'InceptionResnetV2/Repeat_1/block17_18/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',777        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_144/moving_variance': 'InceptionResnetV2/Repeat_1/block17_18/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',778        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_145/kernel': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0a_1x1/weights',779        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_145/beta': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',780        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_145/moving_mean': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',781        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_145/moving_variance': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',782        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_146/kernel': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0b_1x7/weights',783        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_146/beta': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',784        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_146/moving_mean': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',785        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_146/moving_variance': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',786        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_147/kernel': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0c_7x1/weights',787        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_147/beta': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',788        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_147/moving_mean': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',789        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_147/moving_variance': 'InceptionResnetV2/Repeat_1/block17_18/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',790        'FirstStageFeatureExtractor/InceptionResnetV2/block17_18_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_18/Conv2d_1x1/weights',791        'FirstStageFeatureExtractor/InceptionResnetV2/block17_18_conv/bias': 'InceptionResnetV2/Repeat_1/block17_18/Conv2d_1x1/biases',792        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_148/kernel': 'InceptionResnetV2/Repeat_1/block17_19/Branch_0/Conv2d_1x1/weights',793        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_148/beta': 'InceptionResnetV2/Repeat_1/block17_19/Branch_0/Conv2d_1x1/BatchNorm/beta',794        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_148/moving_mean': 'InceptionResnetV2/Repeat_1/block17_19/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',795        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_148/moving_variance': 'InceptionResnetV2/Repeat_1/block17_19/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',796        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_149/kernel': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0a_1x1/weights',797        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_149/beta': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',798        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_149/moving_mean': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',799        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_149/moving_variance': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',800        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_150/kernel': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0b_1x7/weights',801        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_150/beta': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',802        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_150/moving_mean': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',803        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_150/moving_variance': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',804        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_151/kernel': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0c_7x1/weights',805        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_151/beta': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',806        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_151/moving_mean': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',807        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_151/moving_variance': 'InceptionResnetV2/Repeat_1/block17_19/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',808        'FirstStageFeatureExtractor/InceptionResnetV2/block17_19_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_19/Conv2d_1x1/weights',809        'FirstStageFeatureExtractor/InceptionResnetV2/block17_19_conv/bias': 'InceptionResnetV2/Repeat_1/block17_19/Conv2d_1x1/biases',810        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_152/kernel': 'InceptionResnetV2/Repeat_1/block17_20/Branch_0/Conv2d_1x1/weights',811        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_152/beta': 'InceptionResnetV2/Repeat_1/block17_20/Branch_0/Conv2d_1x1/BatchNorm/beta',812        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_152/moving_mean': 'InceptionResnetV2/Repeat_1/block17_20/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',813        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_152/moving_variance': 'InceptionResnetV2/Repeat_1/block17_20/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',814        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_153/kernel': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0a_1x1/weights',815        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_153/beta': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',816        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_153/moving_mean': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',817        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_153/moving_variance': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',818        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_154/kernel': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0b_1x7/weights',819        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_154/beta': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0b_1x7/BatchNorm/beta',820        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_154/moving_mean': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_mean',821        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_154/moving_variance': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0b_1x7/BatchNorm/moving_variance',822        'FirstStageFeatureExtractor/InceptionResnetV2/conv2d_155/kernel': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0c_7x1/weights',823        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_155/beta': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0c_7x1/BatchNorm/beta',824        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_155/moving_mean': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_mean',825        'FirstStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_155/moving_variance': 'InceptionResnetV2/Repeat_1/block17_20/Branch_1/Conv2d_0c_7x1/BatchNorm/moving_variance',826        'FirstStageFeatureExtractor/InceptionResnetV2/block17_20_conv/kernel': 'InceptionResnetV2/Repeat_1/block17_20/Conv2d_1x1/weights',827        'FirstStageFeatureExtractor/InceptionResnetV2/block17_20_conv/bias': 'InceptionResnetV2/Repeat_1/block17_20/Conv2d_1x1/biases',828        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_359/kernel': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_0a_1x1/weights',829        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_359/beta': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_0a_1x1/BatchNorm/beta',830        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_359/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_0a_1x1/BatchNorm/moving_mean',831        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_359/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_0a_1x1/BatchNorm/moving_variance',832        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_360/kernel': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_1a_3x3/weights',833        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_360/beta': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm/beta',834        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_360/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm/moving_mean',835        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_360/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm/moving_variance',836        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_361/kernel': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_0a_1x1/weights',837        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_361/beta': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',838        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_361/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',839        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_361/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',840        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_362/kernel': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_1a_3x3/weights',841        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_362/beta': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm/beta',842        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_362/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm/moving_mean',843        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_362/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm/moving_variance',844        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_363/kernel': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0a_1x1/weights',845        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_363/beta': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0a_1x1/BatchNorm/beta',846        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_363/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean',847        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_363/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance',848        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_364/kernel': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0b_3x3/weights',849        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_364/beta': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0b_3x3/BatchNorm/beta',850        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_364/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_mean',851        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_364/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_0b_3x3/BatchNorm/moving_variance',852        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_365/kernel': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_1a_3x3/weights',853        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_365/beta': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_1a_3x3/BatchNorm/beta',854        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_365/moving_mean': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_1a_3x3/BatchNorm/moving_mean',855        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_365/moving_variance': 'InceptionResnetV2/Mixed_7a/Branch_2/Conv2d_1a_3x3/BatchNorm/moving_variance',856        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_366/kernel': 'InceptionResnetV2/Repeat_2/block8_1/Branch_0/Conv2d_1x1/weights',857        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_366/beta': 'InceptionResnetV2/Repeat_2/block8_1/Branch_0/Conv2d_1x1/BatchNorm/beta',858        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_366/moving_mean': 'InceptionResnetV2/Repeat_2/block8_1/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',859        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_366/moving_variance': 'InceptionResnetV2/Repeat_2/block8_1/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',860        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_367/kernel': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0a_1x1/weights',861        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_367/beta': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',862        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_367/moving_mean': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',863        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_367/moving_variance': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',864        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_368/kernel': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0b_1x3/weights',865        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_368/beta': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',866        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_368/moving_mean': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',867        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_368/moving_variance': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',868        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_369/kernel': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0c_3x1/weights',869        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_369/beta': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',870        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_369/moving_mean': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',871        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_369/moving_variance': 'InceptionResnetV2/Repeat_2/block8_1/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',872        'SecondStageFeatureExtractor/InceptionResnetV2/block8_1_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_1/Conv2d_1x1/weights',873        'SecondStageFeatureExtractor/InceptionResnetV2/block8_1_conv/bias': 'InceptionResnetV2/Repeat_2/block8_1/Conv2d_1x1/biases',874        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_370/kernel': 'InceptionResnetV2/Repeat_2/block8_2/Branch_0/Conv2d_1x1/weights',875        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_370/beta': 'InceptionResnetV2/Repeat_2/block8_2/Branch_0/Conv2d_1x1/BatchNorm/beta',876        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_370/moving_mean': 'InceptionResnetV2/Repeat_2/block8_2/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',877        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_370/moving_variance': 'InceptionResnetV2/Repeat_2/block8_2/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',878        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_371/kernel': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0a_1x1/weights',879        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_371/beta': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',880        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_371/moving_mean': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',881        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_371/moving_variance': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',882        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_372/kernel': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0b_1x3/weights',883        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_372/beta': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',884        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_372/moving_mean': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',885        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_372/moving_variance': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',886        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_373/kernel': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0c_3x1/weights',887        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_373/beta': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',888        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_373/moving_mean': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',889        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_373/moving_variance': 'InceptionResnetV2/Repeat_2/block8_2/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',890        'SecondStageFeatureExtractor/InceptionResnetV2/block8_2_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_2/Conv2d_1x1/weights',891        'SecondStageFeatureExtractor/InceptionResnetV2/block8_2_conv/bias': 'InceptionResnetV2/Repeat_2/block8_2/Conv2d_1x1/biases',892        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_374/kernel': 'InceptionResnetV2/Repeat_2/block8_3/Branch_0/Conv2d_1x1/weights',893        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_374/beta': 'InceptionResnetV2/Repeat_2/block8_3/Branch_0/Conv2d_1x1/BatchNorm/beta',894        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_374/moving_mean': 'InceptionResnetV2/Repeat_2/block8_3/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',895        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_374/moving_variance': 'InceptionResnetV2/Repeat_2/block8_3/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',896        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_375/kernel': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0a_1x1/weights',897        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_375/beta': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',898        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_375/moving_mean': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',899        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_375/moving_variance': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',900        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_376/kernel': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0b_1x3/weights',901        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_376/beta': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',902        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_376/moving_mean': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',903        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_376/moving_variance': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',904        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_377/kernel': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0c_3x1/weights',905        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_377/beta': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',906        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_377/moving_mean': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',907        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_377/moving_variance': 'InceptionResnetV2/Repeat_2/block8_3/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',908        'SecondStageFeatureExtractor/InceptionResnetV2/block8_3_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_3/Conv2d_1x1/weights',909        'SecondStageFeatureExtractor/InceptionResnetV2/block8_3_conv/bias': 'InceptionResnetV2/Repeat_2/block8_3/Conv2d_1x1/biases',910        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_378/kernel': 'InceptionResnetV2/Repeat_2/block8_4/Branch_0/Conv2d_1x1/weights',911        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_378/beta': 'InceptionResnetV2/Repeat_2/block8_4/Branch_0/Conv2d_1x1/BatchNorm/beta',912        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_378/moving_mean': 'InceptionResnetV2/Repeat_2/block8_4/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',913        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_378/moving_variance': 'InceptionResnetV2/Repeat_2/block8_4/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',914        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_379/kernel': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0a_1x1/weights',915        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_379/beta': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',916        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_379/moving_mean': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',917        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_379/moving_variance': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',918        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_380/kernel': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0b_1x3/weights',919        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_380/beta': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',920        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_380/moving_mean': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',921        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_380/moving_variance': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',922        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_381/kernel': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0c_3x1/weights',923        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_381/beta': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',924        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_381/moving_mean': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',925        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_381/moving_variance': 'InceptionResnetV2/Repeat_2/block8_4/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',926        'SecondStageFeatureExtractor/InceptionResnetV2/block8_4_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_4/Conv2d_1x1/weights',927        'SecondStageFeatureExtractor/InceptionResnetV2/block8_4_conv/bias': 'InceptionResnetV2/Repeat_2/block8_4/Conv2d_1x1/biases',928        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_382/kernel': 'InceptionResnetV2/Repeat_2/block8_5/Branch_0/Conv2d_1x1/weights',929        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_382/beta': 'InceptionResnetV2/Repeat_2/block8_5/Branch_0/Conv2d_1x1/BatchNorm/beta',930        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_382/moving_mean': 'InceptionResnetV2/Repeat_2/block8_5/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',931        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_382/moving_variance': 'InceptionResnetV2/Repeat_2/block8_5/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',932        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_383/kernel': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0a_1x1/weights',933        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_383/beta': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',934        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_383/moving_mean': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',935        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_383/moving_variance': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',936        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_384/kernel': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0b_1x3/weights',937        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_384/beta': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',938        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_384/moving_mean': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',939        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_384/moving_variance': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',940        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_385/kernel': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0c_3x1/weights',941        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_385/beta': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',942        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_385/moving_mean': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',943        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_385/moving_variance': 'InceptionResnetV2/Repeat_2/block8_5/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',944        'SecondStageFeatureExtractor/InceptionResnetV2/block8_5_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_5/Conv2d_1x1/weights',945        'SecondStageFeatureExtractor/InceptionResnetV2/block8_5_conv/bias': 'InceptionResnetV2/Repeat_2/block8_5/Conv2d_1x1/biases',946        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_386/kernel': 'InceptionResnetV2/Repeat_2/block8_6/Branch_0/Conv2d_1x1/weights',947        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_386/beta': 'InceptionResnetV2/Repeat_2/block8_6/Branch_0/Conv2d_1x1/BatchNorm/beta',948        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_386/moving_mean': 'InceptionResnetV2/Repeat_2/block8_6/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',949        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_386/moving_variance': 'InceptionResnetV2/Repeat_2/block8_6/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',950        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_387/kernel': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0a_1x1/weights',951        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_387/beta': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',952        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_387/moving_mean': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',953        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_387/moving_variance': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',954        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_388/kernel': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0b_1x3/weights',955        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_388/beta': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',956        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_388/moving_mean': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',957        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_388/moving_variance': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',958        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_389/kernel': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0c_3x1/weights',959        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_389/beta': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',960        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_389/moving_mean': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',961        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_389/moving_variance': 'InceptionResnetV2/Repeat_2/block8_6/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',962        'SecondStageFeatureExtractor/InceptionResnetV2/block8_6_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_6/Conv2d_1x1/weights',963        'SecondStageFeatureExtractor/InceptionResnetV2/block8_6_conv/bias': 'InceptionResnetV2/Repeat_2/block8_6/Conv2d_1x1/biases',964        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_390/kernel': 'InceptionResnetV2/Repeat_2/block8_7/Branch_0/Conv2d_1x1/weights',965        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_390/beta': 'InceptionResnetV2/Repeat_2/block8_7/Branch_0/Conv2d_1x1/BatchNorm/beta',966        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_390/moving_mean': 'InceptionResnetV2/Repeat_2/block8_7/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',967        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_390/moving_variance': 'InceptionResnetV2/Repeat_2/block8_7/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',968        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_391/kernel': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0a_1x1/weights',969        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_391/beta': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',970        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_391/moving_mean': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',971        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_391/moving_variance': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',972        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_392/kernel': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0b_1x3/weights',973        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_392/beta': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',974        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_392/moving_mean': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',975        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_392/moving_variance': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',976        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_393/kernel': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0c_3x1/weights',977        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_393/beta': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',978        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_393/moving_mean': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',979        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_393/moving_variance': 'InceptionResnetV2/Repeat_2/block8_7/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',980        'SecondStageFeatureExtractor/InceptionResnetV2/block8_7_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_7/Conv2d_1x1/weights',981        'SecondStageFeatureExtractor/InceptionResnetV2/block8_7_conv/bias': 'InceptionResnetV2/Repeat_2/block8_7/Conv2d_1x1/biases',982        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_394/kernel': 'InceptionResnetV2/Repeat_2/block8_8/Branch_0/Conv2d_1x1/weights',983        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_394/beta': 'InceptionResnetV2/Repeat_2/block8_8/Branch_0/Conv2d_1x1/BatchNorm/beta',984        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_394/moving_mean': 'InceptionResnetV2/Repeat_2/block8_8/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',985        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_394/moving_variance': 'InceptionResnetV2/Repeat_2/block8_8/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',986        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_395/kernel': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0a_1x1/weights',987        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_395/beta': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',988        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_395/moving_mean': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',989        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_395/moving_variance': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',990        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_396/kernel': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0b_1x3/weights',991        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_396/beta': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',992        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_396/moving_mean': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',993        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_396/moving_variance': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',994        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_397/kernel': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0c_3x1/weights',995        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_397/beta': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',996        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_397/moving_mean': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',997        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_397/moving_variance': 'InceptionResnetV2/Repeat_2/block8_8/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',998        'SecondStageFeatureExtractor/InceptionResnetV2/block8_8_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_8/Conv2d_1x1/weights',999        'SecondStageFeatureExtractor/InceptionResnetV2/block8_8_conv/bias': 'InceptionResnetV2/Repeat_2/block8_8/Conv2d_1x1/biases',1000        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_398/kernel': 'InceptionResnetV2/Repeat_2/block8_9/Branch_0/Conv2d_1x1/weights',1001        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_398/beta': 'InceptionResnetV2/Repeat_2/block8_9/Branch_0/Conv2d_1x1/BatchNorm/beta',1002        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_398/moving_mean': 'InceptionResnetV2/Repeat_2/block8_9/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',1003        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_398/moving_variance': 'InceptionResnetV2/Repeat_2/block8_9/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',1004        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_399/kernel': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0a_1x1/weights',1005        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_399/beta': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',1006        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_399/moving_mean': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',1007        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_399/moving_variance': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',1008        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_400/kernel': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0b_1x3/weights',1009        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_400/beta': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',1010        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_400/moving_mean': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',1011        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_400/moving_variance': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',1012        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_401/kernel': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0c_3x1/weights',1013        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_401/beta': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',1014        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_401/moving_mean': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',1015        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_401/moving_variance': 'InceptionResnetV2/Repeat_2/block8_9/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',1016        'SecondStageFeatureExtractor/InceptionResnetV2/block8_9_conv/kernel': 'InceptionResnetV2/Repeat_2/block8_9/Conv2d_1x1/weights',1017        'SecondStageFeatureExtractor/InceptionResnetV2/block8_9_conv/bias': 'InceptionResnetV2/Repeat_2/block8_9/Conv2d_1x1/biases',1018        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_402/kernel': 'InceptionResnetV2/Block8/Branch_0/Conv2d_1x1/weights',1019        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_402/beta': 'InceptionResnetV2/Block8/Branch_0/Conv2d_1x1/BatchNorm/beta',1020        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_402/moving_mean': 'InceptionResnetV2/Block8/Branch_0/Conv2d_1x1/BatchNorm/moving_mean',1021        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_402/moving_variance': 'InceptionResnetV2/Block8/Branch_0/Conv2d_1x1/BatchNorm/moving_variance',1022        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_403/kernel': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0a_1x1/weights',1023        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_403/beta': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0a_1x1/BatchNorm/beta',1024        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_403/moving_mean': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_mean',1025        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_403/moving_variance': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0a_1x1/BatchNorm/moving_variance',1026        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_404/kernel': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0b_1x3/weights',1027        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_404/beta': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0b_1x3/BatchNorm/beta',1028        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_404/moving_mean': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_mean',1029        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_404/moving_variance': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0b_1x3/BatchNorm/moving_variance',1030        'SecondStageFeatureExtractor/InceptionResnetV2/conv2d_405/kernel': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0c_3x1/weights',1031        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_405/beta': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0c_3x1/BatchNorm/beta',1032        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_405/moving_mean': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_mean',1033        'SecondStageFeatureExtractor/InceptionResnetV2/freezable_batch_norm_405/moving_variance': 'InceptionResnetV2/Block8/Branch_1/Conv2d_0c_3x1/BatchNorm/moving_variance',1034        'SecondStageFeatureExtractor/InceptionResnetV2/block8_10_conv/kernel': 'InceptionResnetV2/Block8/Conv2d_1x1/weights',1035        'SecondStageFeatureExtractor/InceptionResnetV2/block8_10_conv/bias': 'InceptionResnetV2/Block8/Conv2d_1x1/biases',1036        'SecondStageFeatureExtractor/InceptionResnetV2/conv_7b/kernel': 'InceptionResnetV2/Conv2d_7b_1x1/weights',1037        'SecondStageFeatureExtractor/InceptionResnetV2/conv_7b_bn/beta': 'InceptionResnetV2/Conv2d_7b_1x1/BatchNorm/beta',1038        'SecondStageFeatureExtractor/InceptionResnetV2/conv_7b_bn/moving_mean': 'InceptionResnetV2/Conv2d_7b_1x1/BatchNorm/moving_mean',1039        'SecondStageFeatureExtractor/InceptionResnetV2/conv_7b_bn/moving_variance': 'InceptionResnetV2/Conv2d_7b_1x1/BatchNorm/moving_variance',1040    }1041    variables_to_restore = {}1042    for variable in variables_helper.get_global_variables_safely():1043      var_name = keras_to_slim_name_mapping.get(variable.op.name)1044      if var_name:1045        variables_to_restore[var_name] = variable...

Full Screen

Full Screen

commctrl.py

Source:commctrl.py Github

copy

Full Screen

1# Generated by h2py from COMMCTRL.H2WM_USER = 10243ICC_LISTVIEW_CLASSES = 1		# listview, header4ICC_TREEVIEW_CLASSES = 2		# treeview, tooltips5ICC_BAR_CLASSES = 4			# toolbar, statusbar, trackbar, tooltips6ICC_TAB_CLASSES = 8			# tab, tooltips7ICC_UPDOWN_CLASS = 16			# updown8ICC_PROGRESS_CLASS = 32		# progress9ICC_HOTKEY_CLASS = 64			# hotkey10ICC_ANIMATE_CLASS = 128		# animate11ICC_WIN95_CLASSES = 25512ICC_DATE_CLASSES = 256			# month picker, date picker, time picker, updown13ICC_USEREX_CLASSES = 512		# comboex14ICC_COOL_CLASSES = 1024			# rebar (coolbar) control15ICC_INTERNET_CLASSES = 204816ICC_PAGESCROLLER_CLASS = 4096		# page scroller17ICC_NATIVEFNTCTL_CLASS = 8192		# native font control18ODT_HEADER = 10019ODT_TAB = 10120ODT_LISTVIEW = 10221PY_0U = 022NM_FIRST = (PY_0U)				# generic to all controls23NM_LAST = (PY_0U- 99)24LVN_FIRST = (PY_0U-100)			# listview25LVN_LAST = (PY_0U-199)26HDN_FIRST = (PY_0U-300)			# header27HDN_LAST = (PY_0U-399)28TVN_FIRST = (PY_0U-400)			# treeview29TVN_LAST = (PY_0U-499)30TTN_FIRST = (PY_0U-520)			# tooltips31TTN_LAST = (PY_0U-549)32TCN_FIRST = (PY_0U-550)			# tab control33TCN_LAST = (PY_0U-580)34CDN_FIRST = (PY_0U-601)			# common dialog (new)35CDN_LAST = (PY_0U-699)36TBN_FIRST = (PY_0U-700)			# toolbar37TBN_LAST = (PY_0U-720)38UDN_FIRST = (PY_0U-721)			# updown39UDN_LAST = (PY_0U-740)40MCN_FIRST = (PY_0U-750)			# monthcal41MCN_LAST = (PY_0U-759)42DTN_FIRST = (PY_0U-760)			# datetimepick43DTN_LAST = (PY_0U-799)44CBEN_FIRST = (PY_0U-800)		# combo box ex45CBEN_LAST = (PY_0U-830)46RBN_FIRST = (PY_0U-831)			# rebar47RBN_LAST = (PY_0U-859)48IPN_FIRST = (PY_0U-860)			# internet address49IPN_LAST = (PY_0U-879)			# internet address50SBN_FIRST = (PY_0U-880)			# status bar51SBN_LAST = (PY_0U-899)52PGN_FIRST = (PY_0U-900)			# Pager Control53PGN_LAST = (PY_0U-950)54LVM_FIRST = 4096				# ListView messages55TV_FIRST = 4352					# TreeView messages56HDM_FIRST = 4608				# Header messages57TCM_FIRST = 4864				# Tab control messages58PGM_FIRST = 5120				# Pager control messages59CCM_FIRST = 8192				# Common control shared messages60CCM_SETBKCOLOR = (CCM_FIRST + 1)		# lParam is bkColor61CCM_SETCOLORSCHEME = (CCM_FIRST + 2)	# lParam is color scheme62CCM_GETCOLORSCHEME = (CCM_FIRST + 3)	# fills in COLORSCHEME pointed to by lParam63CCM_GETDROPTARGET = (CCM_FIRST + 4)64CCM_SETUNICODEFORMAT = (CCM_FIRST + 5)65CCM_GETUNICODEFORMAT = (CCM_FIRST + 6)66INFOTIPSIZE = 102467NM_OUTOFMEMORY = (NM_FIRST-1)68NM_CLICK = (NM_FIRST-2)				# uses NMCLICK struct69NM_DBLCLK = (NM_FIRST-3)70NM_RETURN = (NM_FIRST-4)71NM_RCLICK = (NM_FIRST-5)			# uses NMCLICK struct72NM_RDBLCLK = (NM_FIRST-6)73NM_SETFOCUS = (NM_FIRST-7)74NM_KILLFOCUS = (NM_FIRST-8)75NM_CUSTOMDRAW = (NM_FIRST-12)76NM_HOVER = (NM_FIRST-13)77NM_NCHITTEST = (NM_FIRST-14)			# uses NMMOUSE struct78NM_KEYDOWN = (NM_FIRST-15)			# uses NMKEY struct79NM_RELEASEDCAPTURE = (NM_FIRST-16)80NM_SETCURSOR = (NM_FIRST-17)			# uses NMMOUSE struct81NM_CHAR = (NM_FIRST-18)				# uses NMCHAR struct82MSGF_COMMCTRL_BEGINDRAG = 1689683MSGF_COMMCTRL_SIZEHEADER = 1689784MSGF_COMMCTRL_DRAGSELECT = 1689885MSGF_COMMCTRL_TOOLBARCUST = 1689986CDRF_DODEFAULT = 087CDRF_NEWFONT = 288CDRF_SKIPDEFAULT = 489CDRF_NOTIFYPOSTPAINT = 1690CDRF_NOTIFYITEMDRAW = 3291CDRF_NOTIFYSUBITEMDRAW = 32  # flags are the same, we can distinguish by context92CDRF_NOTIFYPOSTERASE = 6493CDDS_PREPAINT = 194CDDS_POSTPAINT = 295CDDS_PREERASE = 396CDDS_POSTERASE = 497CDDS_ITEM = 6553698CDDS_ITEMPREPAINT = (CDDS_ITEM | CDDS_PREPAINT)99CDDS_ITEMPOSTPAINT = (CDDS_ITEM | CDDS_POSTPAINT)100CDDS_ITEMPREERASE = (CDDS_ITEM | CDDS_PREERASE)101CDDS_ITEMPOSTERASE = (CDDS_ITEM | CDDS_POSTERASE)102CDDS_SUBITEM = 131072103CDIS_SELECTED = 1104CDIS_GRAYED = 2105CDIS_DISABLED = 4106CDIS_CHECKED = 8107CDIS_FOCUS = 16108CDIS_DEFAULT = 32109CDIS_HOT = 64110CDIS_MARKED = 128111CDIS_INDETERMINATE = 256112CLR_NONE = -1 # 0xFFFFFFFFL113CLR_DEFAULT = -16777216 # 0xFF000000L114ILC_MASK = 1115ILC_COLOR = 0116ILC_COLORDDB = 254117ILC_COLOR4 = 4118ILC_COLOR8 = 8119ILC_COLOR16 = 16120ILC_COLOR24 = 24121ILC_COLOR32 = 32122ILC_PALETTE = 2048      # (not implemented)123ILD_NORMAL = 0124ILD_TRANSPARENT = 1125ILD_MASK = 16126ILD_IMAGE = 32127ILD_ROP = 64128ILD_BLEND25 = 2129ILD_BLEND50 = 4130ILD_OVERLAYMASK = 3840131ILD_SELECTED = ILD_BLEND50132ILD_FOCUS = ILD_BLEND25133ILD_BLEND = ILD_BLEND50134CLR_HILIGHT = CLR_DEFAULT135ILCF_MOVE = (0)136ILCF_SWAP = (1)137WC_HEADERA = "SysHeader32"138WC_HEADER = WC_HEADERA139HDS_HORZ = 0140HDS_BUTTONS = 2141HDS_HOTTRACK = 4142HDS_HIDDEN = 8143HDS_DRAGDROP = 64144HDS_FULLDRAG = 128145HDI_WIDTH = 1146HDI_HEIGHT = HDI_WIDTH147HDI_TEXT = 2148HDI_FORMAT = 4149HDI_LPARAM = 8150HDI_BITMAP = 16151HDI_IMAGE = 32152HDI_DI_SETITEM = 64153HDI_ORDER = 128154HDF_LEFT = 0155HDF_RIGHT = 1156HDF_CENTER = 2157HDF_JUSTIFYMASK = 3158HDF_RTLREADING = 4159HDF_OWNERDRAW = 32768160HDF_STRING = 16384161HDF_BITMAP = 8192162HDF_BITMAP_ON_RIGHT = 4096163HDF_IMAGE = 2048164HDM_GETITEMCOUNT = (HDM_FIRST + 0)165HDM_INSERTITEMA = (HDM_FIRST + 1)166HDM_INSERTITEMW = (HDM_FIRST + 10)167HDM_INSERTITEM = HDM_INSERTITEMA168HDM_DELETEITEM = (HDM_FIRST + 2)169HDM_GETITEMA = (HDM_FIRST + 3)170HDM_GETITEMW = (HDM_FIRST + 11)171HDM_GETITEM = HDM_GETITEMA172HDM_SETITEMA = (HDM_FIRST + 4)173HDM_SETITEMW = (HDM_FIRST + 12)174HDM_SETITEM = HDM_SETITEMA175HDM_LAYOUT = (HDM_FIRST + 5)176HHT_NOWHERE = 1177HHT_ONHEADER = 2178HHT_ONDIVIDER = 4179HHT_ONDIVOPEN = 8180HHT_ABOVE = 256181HHT_BELOW = 512182HHT_TORIGHT = 1024183HHT_TOLEFT = 2048184HDM_HITTEST = (HDM_FIRST + 6)185HDM_GETITEMRECT = (HDM_FIRST + 7)186HDM_SETIMAGELIST = (HDM_FIRST + 8)187HDM_GETIMAGELIST = (HDM_FIRST + 9)188HDM_ORDERTOINDEX = (HDM_FIRST + 15)189HDM_CREATEDRAGIMAGE = (HDM_FIRST + 16)  # wparam = which item (by index)190HDM_GETORDERARRAY = (HDM_FIRST + 17)191HDM_SETORDERARRAY = (HDM_FIRST + 18)192HDM_SETHOTDIVIDER = (HDM_FIRST + 19)193HDM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT194HDM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT195HDN_ITEMCHANGINGA = (HDN_FIRST-0)196HDN_ITEMCHANGINGW = (HDN_FIRST-20)197HDN_ITEMCHANGEDA = (HDN_FIRST-1)198HDN_ITEMCHANGEDW = (HDN_FIRST-21)199HDN_ITEMCLICKA = (HDN_FIRST-2)200HDN_ITEMCLICKW = (HDN_FIRST-22)201HDN_ITEMDBLCLICKA = (HDN_FIRST-3)202HDN_ITEMDBLCLICKW = (HDN_FIRST-23)203HDN_DIVIDERDBLCLICKA = (HDN_FIRST-5)204HDN_DIVIDERDBLCLICKW = (HDN_FIRST-25)205HDN_BEGINTRACKA = (HDN_FIRST-6)206HDN_BEGINTRACKW = (HDN_FIRST-26)207HDN_ENDTRACKA = (HDN_FIRST-7)208HDN_ENDTRACKW = (HDN_FIRST-27)209HDN_TRACKA = (HDN_FIRST-8)210HDN_TRACKW = (HDN_FIRST-28)211HDN_GETDISPINFOA = (HDN_FIRST-9)212HDN_GETDISPINFOW = (HDN_FIRST-29)213HDN_BEGINDRAG = (HDN_FIRST-10)214HDN_ENDDRAG = (HDN_FIRST-11)215HDN_ITEMCHANGING = HDN_ITEMCHANGINGA216HDN_ITEMCHANGED = HDN_ITEMCHANGEDA217HDN_ITEMCLICK = HDN_ITEMCLICKA218HDN_ITEMDBLCLICK = HDN_ITEMDBLCLICKA219HDN_DIVIDERDBLCLICK = HDN_DIVIDERDBLCLICKA220HDN_BEGINTRACK = HDN_BEGINTRACKA221HDN_ENDTRACK = HDN_ENDTRACKA222HDN_TRACK = HDN_TRACKA223HDN_GETDISPINFO = HDN_GETDISPINFOA224TOOLBARCLASSNAMEA = "ToolbarWindow32"225TOOLBARCLASSNAME = TOOLBARCLASSNAMEA226CMB_MASKED = 2227TBSTATE_CHECKED = 1228TBSTATE_PRESSED = 2229TBSTATE_ENABLED = 4230TBSTATE_HIDDEN = 8231TBSTATE_INDETERMINATE = 16232TBSTATE_WRAP = 32233TBSTATE_ELLIPSES = 64234TBSTATE_MARKED = 128235TBSTYLE_BUTTON = 0236TBSTYLE_SEP = 1237TBSTYLE_CHECK = 2238TBSTYLE_GROUP = 4239TBSTYLE_CHECKGROUP = (TBSTYLE_GROUP | TBSTYLE_CHECK)240TBSTYLE_DROPDOWN = 8241TBSTYLE_AUTOSIZE = 16 # automatically calculate the cx of the button242TBSTYLE_NOPREFIX = 32 # if this button should not have accel prefix243TBSTYLE_TOOLTIPS = 256244TBSTYLE_WRAPABLE = 512245TBSTYLE_ALTDRAG = 1024246TBSTYLE_FLAT = 2048247TBSTYLE_LIST = 4096248TBSTYLE_CUSTOMERASE = 8192249TBSTYLE_REGISTERDROP = 16384250TBSTYLE_TRANSPARENT = 32768251TBSTYLE_EX_DRAWDDARROWS = 1252BTNS_BUTTON = TBSTYLE_BUTTON253BTNS_SEP = TBSTYLE_SEP         # 0x0001254BTNS_CHECK = TBSTYLE_CHECK       # 0x0002255BTNS_GROUP = TBSTYLE_GROUP       # 0x0004256BTNS_CHECKGROUP = TBSTYLE_CHECKGROUP # (TBSTYLE_GROUP | TBSTYLE_CHECK)257BTNS_DROPDOWN = TBSTYLE_DROPDOWN    # 0x0008258BTNS_AUTOSIZE = TBSTYLE_AUTOSIZE    # 0x0010; automatically calculate the cx of the button259BTNS_NOPREFIX = TBSTYLE_NOPREFIX    # 0x0020; this button should not have accel prefix260BTNS_SHOWTEXT   = 64 # 0x0040              // ignored unless TBSTYLE_EX_MIXEDBUTTONS is set261BTNS_WHOLEDROPDOWN  = 128 # 0x0080          // draw drop-down arrow, but without split arrow section262TBCDRF_NOEDGES = 65536  # Don't draw button edges263TBCDRF_HILITEHOTTRACK = 131072  # Use color of the button bk when hottracked264TBCDRF_NOOFFSET = 262144  # Don't offset button if pressed265TBCDRF_NOMARK = 524288  # Don't draw default highlight of image/text for TBSTATE_MARKED266TBCDRF_NOETCHEDEFFECT = 1048576  # Don't draw etched effect for disabled items267TB_ENABLEBUTTON = (WM_USER + 1)268TB_CHECKBUTTON = (WM_USER + 2)269TB_PRESSBUTTON = (WM_USER + 3)270TB_HIDEBUTTON = (WM_USER + 4)271TB_INDETERMINATE = (WM_USER + 5)272TB_MARKBUTTON = (WM_USER + 6)273TB_ISBUTTONENABLED = (WM_USER + 9)274TB_ISBUTTONCHECKED = (WM_USER + 10)275TB_ISBUTTONPRESSED = (WM_USER + 11)276TB_ISBUTTONHIDDEN = (WM_USER + 12)277TB_ISBUTTONINDETERMINATE = (WM_USER + 13)278TB_ISBUTTONHIGHLIGHTED = (WM_USER + 14)279TB_SETSTATE = (WM_USER + 17)280TB_GETSTATE = (WM_USER + 18)281TB_ADDBITMAP = (WM_USER + 19)282HINST_COMMCTRL = -1283IDB_STD_SMALL_COLOR = 0284IDB_STD_LARGE_COLOR = 1285IDB_VIEW_SMALL_COLOR = 4286IDB_VIEW_LARGE_COLOR = 5287IDB_HIST_SMALL_COLOR = 8288IDB_HIST_LARGE_COLOR = 9289STD_CUT = 0290STD_COPY = 1291STD_PASTE = 2292STD_UNDO = 3293STD_REDOW = 4294STD_DELETE = 5295STD_FILENEW = 6296STD_FILEOPEN = 7297STD_FILESAVE = 8298STD_PRINTPRE = 9299STD_PROPERTIES = 10300STD_HELP = 11301STD_FIND = 12302STD_REPLACE = 13303STD_PRINT = 14304VIEW_LARGEICONS = 0305VIEW_SMALLICONS = 1306VIEW_LIST = 2307VIEW_DETAILS = 3308VIEW_SORTNAME = 4309VIEW_SORTSIZE = 5310VIEW_SORTDATE = 6311VIEW_SORTTYPE = 7312VIEW_PARENTFOLDER = 8313VIEW_NETCONNECT = 9314VIEW_NETDISCONNECT = 10315VIEW_NEWFOLDER = 11316VIEW_VIEWMENU = 12317HIST_BACK = 0318HIST_FORWARD = 1319HIST_FAVORITES = 2320HIST_ADDTOFAVORITES = 3321HIST_VIEWTREE = 4322TB_ADDBUTTONSA = (WM_USER + 20)323TB_INSERTBUTTONA = (WM_USER + 21)324TB_ADDBUTTONS = (WM_USER + 20)325TB_INSERTBUTTON = (WM_USER + 21)326TB_DELETEBUTTON = (WM_USER + 22)327TB_GETBUTTON = (WM_USER + 23)328TB_BUTTONCOUNT = (WM_USER + 24)329TB_COMMANDTOINDEX = (WM_USER + 25)330TB_SAVERESTOREA = (WM_USER + 26)331TB_SAVERESTOREW = (WM_USER + 76)332TB_CUSTOMIZE = (WM_USER + 27)333TB_ADDSTRINGA = (WM_USER + 28)334TB_ADDSTRINGW = (WM_USER + 77)335TB_GETITEMRECT = (WM_USER + 29)336TB_BUTTONSTRUCTSIZE = (WM_USER + 30)337TB_SETBUTTONSIZE = (WM_USER + 31)338TB_SETBITMAPSIZE = (WM_USER + 32)339TB_AUTOSIZE = (WM_USER + 33)340TB_GETTOOLTIPS = (WM_USER + 35)341TB_SETTOOLTIPS = (WM_USER + 36)342TB_SETPARENT = (WM_USER + 37)343TB_SETROWS = (WM_USER + 39)344TB_GETROWS = (WM_USER + 40)345TB_SETCMDID = (WM_USER + 42)346TB_CHANGEBITMAP = (WM_USER + 43)347TB_GETBITMAP = (WM_USER + 44)348TB_GETBUTTONTEXTA = (WM_USER + 45)349TB_GETBUTTONTEXTW = (WM_USER + 75)350TB_REPLACEBITMAP = (WM_USER + 46)351TB_SETINDENT = (WM_USER + 47)352TB_SETIMAGELIST = (WM_USER + 48)353TB_GETIMAGELIST = (WM_USER + 49)354TB_LOADIMAGES = (WM_USER + 50)355TB_GETRECT = (WM_USER + 51) # wParam is the Cmd instead of index356TB_SETHOTIMAGELIST = (WM_USER + 52)357TB_GETHOTIMAGELIST = (WM_USER + 53)358TB_SETDISABLEDIMAGELIST = (WM_USER + 54)359TB_GETDISABLEDIMAGELIST = (WM_USER + 55)360TB_SETSTYLE = (WM_USER + 56)361TB_GETSTYLE = (WM_USER + 57)362TB_GETBUTTONSIZE = (WM_USER + 58)363TB_SETBUTTONWIDTH = (WM_USER + 59)364TB_SETMAXTEXTROWS = (WM_USER + 60)365TB_GETTEXTROWS = (WM_USER + 61)366TB_GETBUTTONTEXT = TB_GETBUTTONTEXTW367TB_SAVERESTORE = TB_SAVERESTOREW368TB_ADDSTRING = TB_ADDSTRINGW369TB_GETBUTTONTEXT = TB_GETBUTTONTEXTA370TB_SAVERESTORE = TB_SAVERESTOREA371TB_ADDSTRING = TB_ADDSTRINGA372TB_GETOBJECT = (WM_USER + 62)  # wParam == IID, lParam void **ppv373TB_GETHOTITEM = (WM_USER + 71)374TB_SETHOTITEM = (WM_USER + 72)  # wParam == iHotItem375TB_SETANCHORHIGHLIGHT = (WM_USER + 73)  # wParam == TRUE/FALSE376TB_GETANCHORHIGHLIGHT = (WM_USER + 74)377TB_MAPACCELERATORA = (WM_USER + 78)  # wParam == ch, lParam int * pidBtn378TBIMHT_AFTER = 1 # TRUE = insert After iButton, otherwise before379TBIMHT_BACKGROUND = 2 # TRUE iff missed buttons completely380TB_GETINSERTMARK = (WM_USER + 79)  # lParam == LPTBINSERTMARK381TB_SETINSERTMARK = (WM_USER + 80)  # lParam == LPTBINSERTMARK382TB_INSERTMARKHITTEST = (WM_USER + 81)  # wParam == LPPOINT lParam == LPTBINSERTMARK383TB_MOVEBUTTON = (WM_USER + 82)384TB_GETMAXSIZE = (WM_USER + 83)  # lParam == LPSIZE385TB_SETEXTENDEDSTYLE = (WM_USER + 84)  # For TBSTYLE_EX_*386TB_GETEXTENDEDSTYLE = (WM_USER + 85)  # For TBSTYLE_EX_*387TB_GETPADDING = (WM_USER + 86)388TB_SETPADDING = (WM_USER + 87)389TB_SETINSERTMARKCOLOR = (WM_USER + 88)390TB_GETINSERTMARKCOLOR = (WM_USER + 89)391TB_SETCOLORSCHEME = CCM_SETCOLORSCHEME  # lParam is color scheme392TB_GETCOLORSCHEME = CCM_GETCOLORSCHEME	# fills in COLORSCHEME pointed to by lParam393TB_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT394TB_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT395TB_MAPACCELERATORW = (WM_USER + 90)  # wParam == ch, lParam int * pidBtn396TB_MAPACCELERATOR = TB_MAPACCELERATORW397TB_MAPACCELERATOR = TB_MAPACCELERATORA398TBBF_LARGE = 1399TB_GETBITMAPFLAGS = (WM_USER + 41)400TBIF_IMAGE = 1401TBIF_TEXT = 2402TBIF_STATE = 4403TBIF_STYLE = 8404TBIF_LPARAM = 16405TBIF_COMMAND = 32406TBIF_SIZE = 64407TB_GETBUTTONINFOW = (WM_USER + 63)408TB_SETBUTTONINFOW = (WM_USER + 64)409TB_GETBUTTONINFOA = (WM_USER + 65)410TB_SETBUTTONINFOA = (WM_USER + 66)411TB_INSERTBUTTONW = (WM_USER + 67)412TB_ADDBUTTONSW = (WM_USER + 68)413TB_HITTEST = (WM_USER + 69)414TB_SETDRAWTEXTFLAGS = (WM_USER + 70)  # wParam == mask lParam == bit values415TBN_GETBUTTONINFOA = (TBN_FIRST-0)416TBN_GETBUTTONINFOW = (TBN_FIRST-20)417TBN_BEGINDRAG = (TBN_FIRST-1)418TBN_ENDDRAG = (TBN_FIRST-2)419TBN_BEGINADJUST = (TBN_FIRST-3)420TBN_ENDADJUST = (TBN_FIRST-4)421TBN_RESET = (TBN_FIRST-5)422TBN_QUERYINSERT = (TBN_FIRST-6)423TBN_QUERYDELETE = (TBN_FIRST-7)424TBN_TOOLBARCHANGE = (TBN_FIRST-8)425TBN_CUSTHELP = (TBN_FIRST-9)426TBN_DROPDOWN = (TBN_FIRST - 10)427TBN_GETOBJECT = (TBN_FIRST - 12)428HICF_OTHER = 0429HICF_MOUSE = 1          # Triggered by mouse430HICF_ARROWKEYS = 2          # Triggered by arrow keys431HICF_ACCELERATOR = 4          # Triggered by accelerator432HICF_DUPACCEL = 8          # This accelerator is not unique433HICF_ENTERING = 16          # idOld is invalid434HICF_LEAVING = 32          # idNew is invalid435HICF_RESELECT = 64          # hot item reselected436TBN_HOTITEMCHANGE = (TBN_FIRST - 13)437TBN_DRAGOUT = (TBN_FIRST - 14) # this is sent when the user clicks down on a button then drags off the button438TBN_DELETINGBUTTON = (TBN_FIRST - 15) # uses TBNOTIFY439TBN_GETDISPINFOA = (TBN_FIRST - 16) # This is sent when the  toolbar needs  some display information440TBN_GETDISPINFOW = (TBN_FIRST - 17) # This is sent when the  toolbar needs  some display information441TBN_GETINFOTIPA = (TBN_FIRST - 18)442TBN_GETINFOTIPW = (TBN_FIRST - 19)443TBN_GETINFOTIP = TBN_GETINFOTIPA444TBNF_IMAGE = 1445TBNF_TEXT = 2446TBNF_DI_SETITEM = 268435456447TBN_GETDISPINFO = TBN_GETDISPINFOA448TBDDRET_DEFAULT = 0449TBDDRET_NODEFAULT = 1450TBDDRET_TREATPRESSED = 2       # Treat as a standard press button451TBN_GETBUTTONINFO = TBN_GETBUTTONINFOA452REBARCLASSNAMEA = "ReBarWindow32"453REBARCLASSNAME = REBARCLASSNAMEA454RBIM_IMAGELIST = 1455RBS_TOOLTIPS = 256456RBS_VARHEIGHT = 512457RBS_BANDBORDERS = 1024458RBS_FIXEDORDER = 2048459RBS_REGISTERDROP = 4096460RBS_AUTOSIZE = 8192461RBS_VERTICALGRIPPER = 16384  # this always has the vertical gripper (default for horizontal mode)462RBS_DBLCLKTOGGLE = 32768463RBS_TOOLTIPS = 256464RBS_VARHEIGHT = 512465RBS_BANDBORDERS = 1024466RBS_FIXEDORDER = 2048467RBBS_BREAK = 1  # break to new line468RBBS_FIXEDSIZE = 2  # band can't be sized469RBBS_CHILDEDGE = 4  # edge around top & bottom of child window470RBBS_HIDDEN = 8  # don't show471RBBS_NOVERT = 16  # don't show when vertical472RBBS_FIXEDBMP = 32  # bitmap doesn't move during band resize473RBBS_VARIABLEHEIGHT = 64  # allow autosizing of this child vertically474RBBS_GRIPPERALWAYS = 128  # always show the gripper475RBBS_NOGRIPPER = 256  # never show the gripper476RBBIM_STYLE = 1477RBBIM_COLORS = 2478RBBIM_TEXT = 4479RBBIM_IMAGE = 8480RBBIM_CHILD = 16481RBBIM_CHILDSIZE = 32482RBBIM_SIZE = 64483RBBIM_BACKGROUND = 128484RBBIM_ID = 256485RBBIM_IDEALSIZE = 512486RBBIM_LPARAM = 1024487RB_INSERTBANDA = (WM_USER +  1)488RB_DELETEBAND = (WM_USER +  2)489RB_GETBARINFO = (WM_USER +  3)490RB_SETBARINFO = (WM_USER +  4)491RB_GETBANDINFO = (WM_USER +  5)492RB_SETBANDINFOA = (WM_USER +  6)493RB_SETPARENT = (WM_USER +  7)494RB_HITTEST = (WM_USER +  8)495RB_GETRECT = (WM_USER +  9)496RB_INSERTBANDW = (WM_USER +  10)497RB_SETBANDINFOW = (WM_USER +  11)498RB_GETBANDCOUNT = (WM_USER +  12)499RB_GETROWCOUNT = (WM_USER +  13)500RB_GETROWHEIGHT = (WM_USER +  14)501RB_IDTOINDEX = (WM_USER +  16) # wParam == id502RB_GETTOOLTIPS = (WM_USER +  17)503RB_SETTOOLTIPS = (WM_USER +  18)504RB_SETBKCOLOR = (WM_USER +  19) # sets the default BK color505RB_GETBKCOLOR = (WM_USER +  20) # defaults to CLR_NONE506RB_SETTEXTCOLOR = (WM_USER +  21)507RB_GETTEXTCOLOR = (WM_USER +  22) # defaults to 0x00000000508RB_SIZETORECT = (WM_USER +  23) # resize the rebar/break bands and such to this rect (lparam)509RB_SETCOLORSCHEME = CCM_SETCOLORSCHEME  # lParam is color scheme510RB_GETCOLORSCHEME = CCM_GETCOLORSCHEME  # fills in COLORSCHEME pointed to by lParam511RB_INSERTBAND = RB_INSERTBANDA512RB_SETBANDINFO = RB_SETBANDINFOA513RB_BEGINDRAG = (WM_USER + 24)514RB_ENDDRAG = (WM_USER + 25)515RB_DRAGMOVE = (WM_USER + 26)516RB_GETBARHEIGHT = (WM_USER + 27)517RB_GETBANDINFOW = (WM_USER + 28)518RB_GETBANDINFOA = (WM_USER + 29)519RB_GETBANDINFO = RB_GETBANDINFOA520RB_MINIMIZEBAND = (WM_USER + 30)521RB_MAXIMIZEBAND = (WM_USER + 31)522RB_GETDROPTARGET = (CCM_GETDROPTARGET)523RB_GETBANDBORDERS = (WM_USER + 34)  # returns in lparam = lprc the amount of edges added to band wparam524RB_SHOWBAND = (WM_USER + 35)      # show/hide band525RB_SETPALETTE = (WM_USER + 37)526RB_GETPALETTE = (WM_USER + 38)527RB_MOVEBAND = (WM_USER + 39)528RB_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT529RB_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT530RBN_HEIGHTCHANGE = (RBN_FIRST - 0)531RBN_GETOBJECT = (RBN_FIRST - 1)532RBN_LAYOUTCHANGED = (RBN_FIRST - 2)533RBN_AUTOSIZE = (RBN_FIRST - 3)534RBN_BEGINDRAG = (RBN_FIRST - 4)535RBN_ENDDRAG = (RBN_FIRST - 5)536RBN_DELETINGBAND = (RBN_FIRST - 6)     # Uses NMREBAR537RBN_DELETEDBAND = (RBN_FIRST - 7)     # Uses NMREBAR538RBN_CHILDSIZE = (RBN_FIRST - 8)539RBNM_ID = 1540RBNM_STYLE = 2541RBNM_LPARAM = 4542RBHT_NOWHERE = 1543RBHT_CAPTION = 2544RBHT_CLIENT = 3545RBHT_GRABBER = 4546TOOLTIPS_CLASSA = "tooltips_class32"547TOOLTIPS_CLASS = TOOLTIPS_CLASSA548TTS_ALWAYSTIP = 1549TTS_NOPREFIX = 2550TTF_IDISHWND = 1551TTF_CENTERTIP = 2552TTF_RTLREADING = 4553TTF_SUBCLASS = 16554TTF_TRACK = 32555TTF_ABSOLUTE = 128556TTF_TRANSPARENT = 256557TTF_DI_SETITEM = 32768       # valid only on the TTN_NEEDTEXT callback558TTDT_AUTOMATIC = 0559TTDT_RESHOW = 1560TTDT_AUTOPOP = 2561TTDT_INITIAL = 3562TTM_ACTIVATE = (WM_USER + 1)563TTM_SETDELAYTIME = (WM_USER + 3)564TTM_ADDTOOLA = (WM_USER + 4)565TTM_ADDTOOLW = (WM_USER + 50)566TTM_DELTOOLA = (WM_USER + 5)567TTM_DELTOOLW = (WM_USER + 51)568TTM_NEWTOOLRECTA = (WM_USER + 6)569TTM_NEWTOOLRECTW = (WM_USER + 52)570TTM_RELAYEVENT = (WM_USER + 7)571TTM_GETTOOLINFOA = (WM_USER + 8)572TTM_GETTOOLINFOW = (WM_USER + 53)573TTM_SETTOOLINFOA = (WM_USER + 9)574TTM_SETTOOLINFOW = (WM_USER + 54)575TTM_HITTESTA = (WM_USER +10)576TTM_HITTESTW = (WM_USER +55)577TTM_GETTEXTA = (WM_USER +11)578TTM_GETTEXTW = (WM_USER +56)579TTM_UPDATETIPTEXTA = (WM_USER +12)580TTM_UPDATETIPTEXTW = (WM_USER +57)581TTM_GETTOOLCOUNT = (WM_USER +13)582TTM_ENUMTOOLSA = (WM_USER +14)583TTM_ENUMTOOLSW = (WM_USER +58)584TTM_GETCURRENTTOOLA = (WM_USER + 15)585TTM_GETCURRENTTOOLW = (WM_USER + 59)586TTM_WINDOWFROMPOINT = (WM_USER + 16)587TTM_TRACKACTIVATE = (WM_USER + 17)  # wParam = TRUE/FALSE start end  lparam = LPTOOLINFO588TTM_TRACKPOSITION = (WM_USER + 18)  # lParam = dwPos589TTM_SETTIPBKCOLOR = (WM_USER + 19)590TTM_SETTIPTEXTCOLOR = (WM_USER + 20)591TTM_GETDELAYTIME = (WM_USER + 21)592TTM_GETTIPBKCOLOR = (WM_USER + 22)593TTM_GETTIPTEXTCOLOR = (WM_USER + 23)594TTM_SETMAXTIPWIDTH = (WM_USER + 24)595TTM_GETMAXTIPWIDTH = (WM_USER + 25)596TTM_SETMARGIN = (WM_USER + 26)  # lParam = lprc597TTM_GETMARGIN = (WM_USER + 27)  # lParam = lprc598TTM_POP = (WM_USER + 28)599TTM_UPDATE = (WM_USER + 29)600TTM_ADDTOOL = TTM_ADDTOOLA601TTM_DELTOOL = TTM_DELTOOLA602TTM_NEWTOOLRECT = TTM_NEWTOOLRECTA603TTM_GETTOOLINFO = TTM_GETTOOLINFOA604TTM_SETTOOLINFO = TTM_SETTOOLINFOA605TTM_HITTEST = TTM_HITTESTA606TTM_GETTEXT = TTM_GETTEXTA607TTM_UPDATETIPTEXT = TTM_UPDATETIPTEXTA608TTM_ENUMTOOLS = TTM_ENUMTOOLSA609TTM_GETCURRENTTOOL = TTM_GETCURRENTTOOLA610TTN_GETDISPINFOA = (TTN_FIRST - 0)611TTN_GETDISPINFOW = (TTN_FIRST - 10)612TTN_SHOW = (TTN_FIRST - 1)613TTN_POP = (TTN_FIRST - 2)614TTN_GETDISPINFO = TTN_GETDISPINFOA615TTN_NEEDTEXT = TTN_GETDISPINFO616TTN_NEEDTEXTA = TTN_GETDISPINFOA617TTN_NEEDTEXTW = TTN_GETDISPINFOW618SBARS_SIZEGRIP = 256619SBARS_TOOLTIPS = 2048620STATUSCLASSNAMEA = "msctls_statusbar32"621STATUSCLASSNAME = STATUSCLASSNAMEA622SB_SETTEXTA = (WM_USER+1)623SB_SETTEXTW = (WM_USER+11)624SB_GETTEXTA = (WM_USER+2)625SB_GETTEXTW = (WM_USER+13)626SB_GETTEXTLENGTHA = (WM_USER+3)627SB_GETTEXTLENGTHW = (WM_USER+12)628SB_GETTEXT = SB_GETTEXTA629SB_SETTEXT = SB_SETTEXTA630SB_GETTEXTLENGTH = SB_GETTEXTLENGTHA631SB_SETPARTS = (WM_USER+4)632SB_GETPARTS = (WM_USER+6)633SB_GETBORDERS = (WM_USER+7)634SB_SETMINHEIGHT = (WM_USER+8)635SB_SIMPLE = (WM_USER+9)636SB_GETRECT = (WM_USER+10)637SB_ISSIMPLE = (WM_USER+14)638SB_SETICON = (WM_USER+15)639SB_SETTIPTEXTA = (WM_USER+16)640SB_SETTIPTEXTW = (WM_USER+17)641SB_GETTIPTEXTA = (WM_USER+18)642SB_GETTIPTEXTW = (WM_USER+19)643SB_GETICON = (WM_USER+20)644SB_SETTIPTEXT = SB_SETTIPTEXTA645SB_GETTIPTEXT = SB_GETTIPTEXTA646SB_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT647SB_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT648SBT_OWNERDRAW = 4096649SBT_NOBORDERS = 256650SBT_POPOUT = 512651SBT_RTLREADING = 1024652SBT_NOTABPARSING = 2048653SBT_TOOLTIPS = 2048654SB_SETBKCOLOR = CCM_SETBKCOLOR      # lParam = bkColor655SBN_SIMPLEMODECHANGE = (SBN_FIRST - 0)656TRACKBAR_CLASSA = "msctls_trackbar32"657TRACKBAR_CLASS = TRACKBAR_CLASSA658TBS_AUTOTICKS = 1659TBS_VERT = 2660TBS_HORZ = 0661TBS_TOP = 4662TBS_BOTTOM = 0663TBS_LEFT = 4664TBS_RIGHT = 0665TBS_BOTH = 8666TBS_NOTICKS = 16667TBS_ENABLESELRANGE = 32668TBS_FIXEDLENGTH = 64669TBS_NOTHUMB = 128670TBS_TOOLTIPS = 256671TBM_GETPOS = (WM_USER)672TBM_GETRANGEMIN = (WM_USER+1)673TBM_GETRANGEMAX = (WM_USER+2)674TBM_GETTIC = (WM_USER+3)675TBM_SETTIC = (WM_USER+4)676TBM_SETPOS = (WM_USER+5)677TBM_SETRANGE = (WM_USER+6)678TBM_SETRANGEMIN = (WM_USER+7)679TBM_SETRANGEMAX = (WM_USER+8)680TBM_CLEARTICS = (WM_USER+9)681TBM_SETSEL = (WM_USER+10)682TBM_SETSELSTART = (WM_USER+11)683TBM_SETSELEND = (WM_USER+12)684TBM_GETPTICS = (WM_USER+14)685TBM_GETTICPOS = (WM_USER+15)686TBM_GETNUMTICS = (WM_USER+16)687TBM_GETSELSTART = (WM_USER+17)688TBM_GETSELEND = (WM_USER+18)689TBM_CLEARSEL = (WM_USER+19)690TBM_SETTICFREQ = (WM_USER+20)691TBM_SETPAGESIZE = (WM_USER+21)692TBM_GETPAGESIZE = (WM_USER+22)693TBM_SETLINESIZE = (WM_USER+23)694TBM_GETLINESIZE = (WM_USER+24)695TBM_GETTHUMBRECT = (WM_USER+25)696TBM_GETCHANNELRECT = (WM_USER+26)697TBM_SETTHUMBLENGTH = (WM_USER+27)698TBM_GETTHUMBLENGTH = (WM_USER+28)699TBM_SETTOOLTIPS = (WM_USER+29)700TBM_GETTOOLTIPS = (WM_USER+30)701TBM_SETTIPSIDE = (WM_USER+31)702TBTS_TOP = 0703TBTS_LEFT = 1704TBTS_BOTTOM = 2705TBTS_RIGHT = 3706TBM_SETBUDDY = (WM_USER+32) # wparam = BOOL fLeft; (or right)707TBM_GETBUDDY = (WM_USER+33) # wparam = BOOL fLeft; (or right)708TBM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT709TBM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT710TB_LINEUP = 0711TB_LINEDOWN = 1712TB_PAGEUP = 2713TB_PAGEDOWN = 3714TB_THUMBPOSITION = 4715TB_THUMBTRACK = 5716TB_TOP = 6717TB_BOTTOM = 7718TB_ENDTRACK = 8719TBCD_TICS = 1720TBCD_THUMB = 2721TBCD_CHANNEL = 3722DL_BEGINDRAG = (WM_USER+133)723DL_DRAGGING = (WM_USER+134)724DL_DROPPED = (WM_USER+135)725DL_CANCELDRAG = (WM_USER+136)726DL_CURSORSET = 0727DL_STOPCURSOR = 1728DL_COPYCURSOR = 2729DL_MOVECURSOR = 3730DRAGLISTMSGSTRING = "commctrl_DragListMsg"731UPDOWN_CLASSA = "msctls_updown32"732UPDOWN_CLASS = UPDOWN_CLASSA733UD_MAXVAL = 32767734UD_MINVAL = (-UD_MAXVAL)735UDS_WRAP = 1736UDS_SETBUDDYINT = 2737UDS_ALIGNRIGHT = 4738UDS_ALIGNLEFT = 8739UDS_AUTOBUDDY = 16740UDS_ARROWKEYS = 32741UDS_HORZ = 64742UDS_NOTHOUSANDS = 128743UDS_HOTTRACK = 256744UDM_SETRANGE = (WM_USER+101)745UDM_GETRANGE = (WM_USER+102)746UDM_SETPOS = (WM_USER+103)747UDM_GETPOS = (WM_USER+104)748UDM_SETBUDDY = (WM_USER+105)749UDM_GETBUDDY = (WM_USER+106)750UDM_SETACCEL = (WM_USER+107)751UDM_GETACCEL = (WM_USER+108)752UDM_SETBASE = (WM_USER+109)753UDM_GETBASE = (WM_USER+110)754UDM_SETRANGE32 = (WM_USER+111)755UDM_GETRANGE32 = (WM_USER+112) # wParam & lParam are LPINT756UDM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT757UDM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT758UDN_DELTAPOS = (UDN_FIRST - 1)759PROGRESS_CLASSA = "msctls_progress32"760PROGRESS_CLASS = PROGRESS_CLASSA761PBS_SMOOTH = 1762PBS_VERTICAL = 4763PBM_SETRANGE = (WM_USER+1)764PBM_SETPOS = (WM_USER+2)765PBM_DELTAPOS = (WM_USER+3)766PBM_SETSTEP = (WM_USER+4)767PBM_STEPIT = (WM_USER+5)768PBM_SETRANGE32 = (WM_USER+6)  # lParam = high, wParam = low769PBM_GETRANGE = (WM_USER+7)  # wParam = return (TRUE ? low : high). lParam = PPBRANGE or NULL770PBM_GETPOS = (WM_USER+8)771PBM_SETBARCOLOR = (WM_USER+9)		# lParam = bar color772PBM_SETBKCOLOR = CCM_SETBKCOLOR  # lParam = bkColor773HOTKEYF_SHIFT = 1774HOTKEYF_CONTROL = 2775HOTKEYF_ALT = 4776HOTKEYF_EXT = 128777HOTKEYF_EXT = 8778HKCOMB_NONE = 1779HKCOMB_S = 2780HKCOMB_C = 4781HKCOMB_A = 8782HKCOMB_SC = 16783HKCOMB_SA = 32784HKCOMB_CA = 64785HKCOMB_SCA = 128786HKM_SETHOTKEY = (WM_USER+1)787HKM_GETHOTKEY = (WM_USER+2)788HKM_SETRULES = (WM_USER+3)789HOTKEY_CLASSA = "msctls_hotkey32"790HOTKEY_CLASS = HOTKEY_CLASSA791CCS_TOP = 0x00000001792CCS_NOMOVEY = 0x00000002793CCS_BOTTOM = 0x00000003794CCS_NORESIZE = 0x00000004795CCS_NOPARENTALIGN = 0x00000008796CCS_ADJUSTABLE = 0x00000020797CCS_NODIVIDER = 0x00000040798CCS_VERT = 0x00000080799CCS_LEFT = (CCS_VERT | CCS_TOP)800CCS_RIGHT = (CCS_VERT | CCS_BOTTOM)801CCS_NOMOVEX = (CCS_VERT | CCS_NOMOVEY)802WC_LISTVIEWA = "SysListView32"803WC_LISTVIEW = WC_LISTVIEWA804LVS_ICON = 0805LVS_REPORT = 1806LVS_SMALLICON = 2807LVS_LIST = 3808LVS_TYPEMASK = 3809LVS_SINGLESEL = 4810LVS_SHOWSELALWAYS = 8811LVS_SORTASCENDING = 16812LVS_SORTDESCENDING = 32813LVS_SHAREIMAGELISTS = 64814LVS_NOLABELWRAP = 128815LVS_AUTOARRANGE = 256816LVS_EDITLABELS = 512817LVS_OWNERDATA = 4096818LVS_NOSCROLL = 8192819LVS_TYPESTYLEMASK = 64512820LVS_ALIGNTOP = 0821LVS_ALIGNLEFT = 2048822LVS_ALIGNMASK = 3072823LVS_OWNERDRAWFIXED = 1024824LVS_NOCOLUMNHEADER = 16384825LVS_NOSORTHEADER = 32768826LVM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT827LVM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT828LVM_GETBKCOLOR = (LVM_FIRST + 0)829LVM_SETBKCOLOR = (LVM_FIRST + 1)830LVM_GETIMAGELIST = (LVM_FIRST + 2)831LVSIL_NORMAL = 0832LVSIL_SMALL = 1833LVSIL_STATE = 2834LVM_SETIMAGELIST = (LVM_FIRST + 3)835LVM_GETITEMCOUNT = (LVM_FIRST + 4)836LVIF_TEXT = 1837LVIF_IMAGE = 2838LVIF_PARAM = 4839LVIF_STATE = 8840LVIF_INDENT = 16841LVIF_NORECOMPUTE = 2048842LVIS_FOCUSED = 1843LVIS_SELECTED = 2844LVIS_CUT = 4845LVIS_DROPHILITED = 8846LVIS_ACTIVATING = 32847LVIS_OVERLAYMASK = 3840848LVIS_STATEIMAGEMASK = 61440849I_INDENTCALLBACK = (-1)850LPSTR_TEXTCALLBACKA = -1851LPSTR_TEXTCALLBACK = LPSTR_TEXTCALLBACKA852I_IMAGECALLBACK = (-1)853LVM_GETITEMA = (LVM_FIRST + 5)854LVM_GETITEMW = (LVM_FIRST + 75)855LVM_GETITEM = LVM_GETITEMW856LVM_GETITEM = LVM_GETITEMA857LVM_SETITEMA = (LVM_FIRST + 6)858LVM_SETITEMW = (LVM_FIRST + 76)859LVM_SETITEM = LVM_SETITEMW860LVM_SETITEM = LVM_SETITEMA861LVM_INSERTITEMA = (LVM_FIRST + 7)862LVM_INSERTITEMW = (LVM_FIRST + 77)863LVM_INSERTITEM = LVM_INSERTITEMA864LVM_DELETEITEM = (LVM_FIRST + 8)865LVM_DELETEALLITEMS = (LVM_FIRST + 9)866LVM_GETCALLBACKMASK = (LVM_FIRST + 10)867LVM_SETCALLBACKMASK = (LVM_FIRST + 11)868LVNI_ALL = 0869LVNI_FOCUSED = 1870LVNI_SELECTED = 2871LVNI_CUT = 4872LVNI_DROPHILITED = 8873LVNI_ABOVE = 256874LVNI_BELOW = 512875LVNI_TOLEFT = 1024876LVNI_TORIGHT = 2048877LVM_GETNEXTITEM = (LVM_FIRST + 12)878LVFI_PARAM = 1879LVFI_STRING = 2880LVFI_PARTIAL = 8881LVFI_WRAP = 32882LVFI_NEARESTXY = 64883LVM_FINDITEMA = (LVM_FIRST + 13)884LVM_FINDITEMW = (LVM_FIRST + 83)885LVM_FINDITEM = LVM_FINDITEMA886LVIR_BOUNDS = 0887LVIR_ICON = 1888LVIR_LABEL = 2889LVIR_SELECTBOUNDS = 3890LVM_GETITEMRECT = (LVM_FIRST + 14)891LVM_SETITEMPOSITION = (LVM_FIRST + 15)892LVM_GETITEMPOSITION = (LVM_FIRST + 16)893LVM_GETSTRINGWIDTHA = (LVM_FIRST + 17)894LVM_GETSTRINGWIDTHW = (LVM_FIRST + 87)895LVM_GETSTRINGWIDTH = LVM_GETSTRINGWIDTHA896LVHT_NOWHERE = 1897LVHT_ONITEMICON = 2898LVHT_ONITEMLABEL = 4899LVHT_ONITEMSTATEICON = 8900LVHT_ONITEM = (LVHT_ONITEMICON | LVHT_ONITEMLABEL | LVHT_ONITEMSTATEICON)901LVHT_ABOVE = 8902LVHT_BELOW = 16903LVHT_TORIGHT = 32904LVHT_TOLEFT = 64905LVM_HITTEST = (LVM_FIRST + 18)906LVM_ENSUREVISIBLE = (LVM_FIRST + 19)907LVM_SCROLL = (LVM_FIRST + 20)908LVM_REDRAWITEMS = (LVM_FIRST + 21)909LVA_DEFAULT = 0910LVA_ALIGNLEFT = 1911LVA_ALIGNTOP = 2912LVA_SNAPTOGRID = 5913LVM_ARRANGE = (LVM_FIRST + 22)914LVM_EDITLABELA = (LVM_FIRST + 23)915LVM_EDITLABELW = (LVM_FIRST + 118)916LVM_EDITLABEL = LVM_EDITLABELW917LVM_EDITLABEL = LVM_EDITLABELA918LVM_GETEDITCONTROL = (LVM_FIRST + 24)919LVCF_FMT = 1920LVCF_WIDTH = 2921LVCF_TEXT = 4922LVCF_SUBITEM = 8923LVCF_IMAGE = 16924LVCF_ORDER = 32925LVCFMT_LEFT = 0926LVCFMT_RIGHT = 1927LVCFMT_CENTER = 2928LVCFMT_JUSTIFYMASK = 3929LVCFMT_IMAGE = 2048930LVCFMT_BITMAP_ON_RIGHT = 4096931LVCFMT_COL_HAS_IMAGES = 32768932LVM_GETCOLUMNA = (LVM_FIRST + 25)933LVM_GETCOLUMNW = (LVM_FIRST + 95)934LVM_GETCOLUMN = LVM_GETCOLUMNA935LVM_SETCOLUMNA = (LVM_FIRST + 26)936LVM_SETCOLUMNW = (LVM_FIRST + 96)937LVM_SETCOLUMN = LVM_SETCOLUMNA938LVM_INSERTCOLUMNA = (LVM_FIRST + 27)939LVM_INSERTCOLUMNW = (LVM_FIRST + 97)940LVM_INSERTCOLUMN = LVM_INSERTCOLUMNA941LVM_DELETECOLUMN = (LVM_FIRST + 28)942LVM_GETCOLUMNWIDTH = (LVM_FIRST + 29)943LVSCW_AUTOSIZE = -1944LVSCW_AUTOSIZE_USEHEADER = -2945LVM_SETCOLUMNWIDTH = (LVM_FIRST + 30)946LVM_GETHEADER = (LVM_FIRST + 31)947LVM_CREATEDRAGIMAGE = (LVM_FIRST + 33)948LVM_GETVIEWRECT = (LVM_FIRST + 34)949LVM_GETTEXTCOLOR = (LVM_FIRST + 35)950LVM_SETTEXTCOLOR = (LVM_FIRST + 36)951LVM_GETTEXTBKCOLOR = (LVM_FIRST + 37)952LVM_SETTEXTBKCOLOR = (LVM_FIRST + 38)953LVM_GETTOPINDEX = (LVM_FIRST + 39)954LVM_GETCOUNTPERPAGE = (LVM_FIRST + 40)955LVM_GETORIGIN = (LVM_FIRST + 41)956LVM_UPDATE = (LVM_FIRST + 42)957LVM_SETITEMSTATE = (LVM_FIRST + 43)958LVM_GETITEMSTATE = (LVM_FIRST + 44)959LVM_GETITEMTEXTA = (LVM_FIRST + 45)960LVM_GETITEMTEXTW = (LVM_FIRST + 115)961LVM_GETITEMTEXT = LVM_GETITEMTEXTW962LVM_GETITEMTEXT = LVM_GETITEMTEXTA963LVM_SETITEMTEXTA = (LVM_FIRST + 46)964LVM_SETITEMTEXTW = (LVM_FIRST + 116)965LVM_SETITEMTEXT = LVM_SETITEMTEXTW966LVM_SETITEMTEXT = LVM_SETITEMTEXTA967LVSICF_NOINVALIDATEALL = 1968LVSICF_NOSCROLL = 2969LVM_SETITEMCOUNT = (LVM_FIRST + 47)970LVM_SORTITEMS = (LVM_FIRST + 48)971LVM_SETITEMPOSITION32 = (LVM_FIRST + 49)972LVM_GETSELECTEDCOUNT = (LVM_FIRST + 50)973LVM_GETITEMSPACING = (LVM_FIRST + 51)974LVM_GETISEARCHSTRINGA = (LVM_FIRST + 52)975LVM_GETISEARCHSTRINGW = (LVM_FIRST + 117)976LVM_GETISEARCHSTRING = LVM_GETISEARCHSTRINGA977LVM_SETICONSPACING = (LVM_FIRST + 53)978LVM_SETEXTENDEDLISTVIEWSTYLE = (LVM_FIRST + 54)   # optional wParam == mask979LVM_GETEXTENDEDLISTVIEWSTYLE = (LVM_FIRST + 55)980LVS_EX_GRIDLINES = 1981LVS_EX_SUBITEMIMAGES = 2982LVS_EX_CHECKBOXES = 4983LVS_EX_TRACKSELECT = 8984LVS_EX_HEADERDRAGDROP = 16985LVS_EX_FULLROWSELECT = 32 # applies to report mode only986LVS_EX_ONECLICKACTIVATE = 64987LVS_EX_TWOCLICKACTIVATE = 128988LVS_EX_FLATSB = 256989LVS_EX_REGIONAL = 512990LVS_EX_INFOTIP = 1024 # listview does InfoTips for you991LVS_EX_UNDERLINEHOT = 2048992LVS_EX_UNDERLINECOLD = 4096993LVS_EX_MULTIWORKAREAS = 8192994LVM_GETSUBITEMRECT = (LVM_FIRST + 56)995LVM_SUBITEMHITTEST = (LVM_FIRST + 57)996LVM_SETCOLUMNORDERARRAY = (LVM_FIRST + 58)997LVM_GETCOLUMNORDERARRAY = (LVM_FIRST + 59)998LVM_SETHOTITEM = (LVM_FIRST + 60)999LVM_GETHOTITEM = (LVM_FIRST + 61)1000LVM_SETHOTCURSOR = (LVM_FIRST + 62)1001LVM_GETHOTCURSOR = (LVM_FIRST + 63)1002LVM_APPROXIMATEVIEWRECT = (LVM_FIRST + 64)1003LV_MAX_WORKAREAS = 161004LVM_SETWORKAREAS = (LVM_FIRST + 65)1005LVM_GETWORKAREAS = (LVM_FIRST + 70)1006LVM_GETNUMBEROFWORKAREAS = (LVM_FIRST + 73)1007LVM_GETSELECTIONMARK = (LVM_FIRST + 66)1008LVM_SETSELECTIONMARK = (LVM_FIRST + 67)1009LVM_SETHOVERTIME = (LVM_FIRST + 71)1010LVM_GETHOVERTIME = (LVM_FIRST + 72)1011LVM_SETTOOLTIPS = (LVM_FIRST + 74)1012LVM_GETTOOLTIPS = (LVM_FIRST + 78)1013LVBKIF_SOURCE_NONE = 01014LVBKIF_SOURCE_HBITMAP = 11015LVBKIF_SOURCE_URL = 21016LVBKIF_SOURCE_MASK = 31017LVBKIF_STYLE_NORMAL = 01018LVBKIF_STYLE_TILE = 161019LVBKIF_STYLE_MASK = 161020LVM_SETBKIMAGEA = (LVM_FIRST + 68)1021LVM_SETBKIMAGEW = (LVM_FIRST + 138)1022LVM_GETBKIMAGEA = (LVM_FIRST + 69)1023LVM_GETBKIMAGEW = (LVM_FIRST + 139)1024LVKF_ALT = 11025LVKF_CONTROL = 21026LVKF_SHIFT = 41027LVN_ITEMCHANGING = (LVN_FIRST-0)1028LVN_ITEMCHANGED = (LVN_FIRST-1)1029LVN_INSERTITEM = (LVN_FIRST-2)1030LVN_DELETEITEM = (LVN_FIRST-3)1031LVN_DELETEALLITEMS = (LVN_FIRST-4)1032LVN_BEGINLABELEDITA = (LVN_FIRST-5)1033LVN_BEGINLABELEDITW = (LVN_FIRST-75)1034LVN_ENDLABELEDITA = (LVN_FIRST-6)1035LVN_ENDLABELEDITW = (LVN_FIRST-76)1036LVN_COLUMNCLICK = (LVN_FIRST-8)1037LVN_BEGINDRAG = (LVN_FIRST-9)1038LVN_BEGINRDRAG = (LVN_FIRST-11)1039LVN_ODCACHEHINT = (LVN_FIRST-13)1040LVN_ODFINDITEMA = (LVN_FIRST-52)1041LVN_ODFINDITEMW = (LVN_FIRST-79)1042LVN_ITEMACTIVATE = (LVN_FIRST-14)1043LVN_ODSTATECHANGED = (LVN_FIRST-15)1044LVN_ODFINDITEM = LVN_ODFINDITEMA1045LVN_HOTTRACK = (LVN_FIRST-21)1046LVN_GETDISPINFOA = (LVN_FIRST-50)1047LVN_GETDISPINFOW = (LVN_FIRST-77)1048LVN_SETDISPINFOA = (LVN_FIRST-51)1049LVN_SETDISPINFOW = (LVN_FIRST-78)1050LVN_BEGINLABELEDIT = LVN_BEGINLABELEDITA1051LVN_ENDLABELEDIT = LVN_ENDLABELEDITA1052LVN_GETDISPINFO = LVN_GETDISPINFOA1053LVN_SETDISPINFO = LVN_SETDISPINFOA1054LVIF_DI_SETITEM = 40961055LVN_KEYDOWN = (LVN_FIRST-55)1056LVN_MARQUEEBEGIN = (LVN_FIRST-56)1057LVGIT_UNFOLDED = 11058LVN_GETINFOTIPA = (LVN_FIRST-57)1059LVN_GETINFOTIPW = (LVN_FIRST-58)1060LVN_GETINFOTIP = LVN_GETINFOTIPA1061WC_TREEVIEWA = "SysTreeView32"1062WC_TREEVIEW = WC_TREEVIEWA1063TVS_HASBUTTONS = 11064TVS_HASLINES = 21065TVS_LINESATROOT = 41066TVS_EDITLABELS = 81067TVS_DISABLEDRAGDROP = 161068TVS_SHOWSELALWAYS = 321069TVS_RTLREADING = 641070TVS_NOTOOLTIPS = 1281071TVS_CHECKBOXES = 2561072TVS_TRACKSELECT = 5121073TVS_SINGLEEXPAND = 10241074TVS_INFOTIP = 20481075TVS_FULLROWSELECT = 40961076TVS_NOSCROLL = 81921077TVS_NONEVENHEIGHT = 163841078TVIF_TEXT = 11079TVIF_IMAGE = 21080TVIF_PARAM = 41081TVIF_STATE = 81082TVIF_HANDLE = 161083TVIF_SELECTEDIMAGE = 321084TVIF_CHILDREN = 641085TVIF_INTEGRAL = 1281086TVIS_SELECTED = 21087TVIS_CUT = 41088TVIS_DROPHILITED = 81089TVIS_BOLD = 161090TVIS_EXPANDED = 321091TVIS_EXPANDEDONCE = 641092TVIS_EXPANDPARTIAL = 1281093TVIS_OVERLAYMASK = 38401094TVIS_STATEIMAGEMASK = 614401095TVIS_USERMASK = 614401096I_CHILDRENCALLBACK = (-1)1097TVI_ROOT = -655361098TVI_FIRST = -655351099TVI_LAST = -655341100TVI_SORT = -655331101TVM_INSERTITEMA = (TV_FIRST + 0)1102TVM_INSERTITEMW = (TV_FIRST + 50)1103TVM_INSERTITEM = TVM_INSERTITEMW1104TVM_INSERTITEM = TVM_INSERTITEMA1105TVM_DELETEITEM = (TV_FIRST + 1)1106TVM_EXPAND = (TV_FIRST + 2)1107TVE_COLLAPSE = 11108TVE_EXPAND = 21109TVE_TOGGLE = 31110TVE_EXPANDPARTIAL = 163841111TVE_COLLAPSERESET = 327681112TVM_GETITEMRECT = (TV_FIRST + 4)1113TVM_GETCOUNT = (TV_FIRST + 5)1114TVM_GETINDENT = (TV_FIRST + 6)1115TVM_SETINDENT = (TV_FIRST + 7)1116TVM_GETIMAGELIST = (TV_FIRST + 8)1117TVSIL_NORMAL = 01118TVSIL_STATE = 21119TVM_SETIMAGELIST = (TV_FIRST + 9)1120TVM_GETNEXTITEM = (TV_FIRST + 10)1121TVGN_ROOT = 01122TVGN_NEXT = 11123TVGN_PREVIOUS = 21124TVGN_PARENT = 31125TVGN_CHILD = 41126TVGN_FIRSTVISIBLE = 51127TVGN_NEXTVISIBLE = 61128TVGN_PREVIOUSVISIBLE = 71129TVGN_DROPHILITE = 81130TVGN_CARET = 91131TVGN_LASTVISIBLE = 101132TVM_SELECTITEM = (TV_FIRST + 11)1133TVM_GETITEMA = (TV_FIRST + 12)1134TVM_GETITEMW = (TV_FIRST + 62)1135TVM_GETITEM = TVM_GETITEMW1136TVM_GETITEM = TVM_GETITEMA1137TVM_SETITEMA = (TV_FIRST + 13)1138TVM_SETITEMW = (TV_FIRST + 63)1139TVM_SETITEM = TVM_SETITEMW1140TVM_SETITEM = TVM_SETITEMA1141TVM_EDITLABELA = (TV_FIRST + 14)1142TVM_EDITLABELW = (TV_FIRST + 65)1143TVM_EDITLABEL = TVM_EDITLABELW1144TVM_EDITLABEL = TVM_EDITLABELA1145TVM_GETEDITCONTROL = (TV_FIRST + 15)1146TVM_GETVISIBLECOUNT = (TV_FIRST + 16)1147TVM_HITTEST = (TV_FIRST + 17)1148TVHT_NOWHERE = 11149TVHT_ONITEMICON = 21150TVHT_ONITEMLABEL = 41151TVHT_ONITEMINDENT = 81152TVHT_ONITEMBUTTON = 161153TVHT_ONITEMRIGHT = 321154TVHT_ONITEMSTATEICON = 641155TVHT_ABOVE = 2561156TVHT_BELOW = 5121157TVHT_TORIGHT = 10241158TVHT_TOLEFT = 20481159TVHT_ONITEM = (TVHT_ONITEMICON | TVHT_ONITEMLABEL | TVHT_ONITEMSTATEICON)1160TVM_CREATEDRAGIMAGE = (TV_FIRST + 18)1161TVM_SORTCHILDREN = (TV_FIRST + 19)1162TVM_ENSUREVISIBLE = (TV_FIRST + 20)1163TVM_SORTCHILDRENCB = (TV_FIRST + 21)1164TVM_ENDEDITLABELNOW = (TV_FIRST + 22)1165TVM_GETISEARCHSTRINGA = (TV_FIRST + 23)1166TVM_GETISEARCHSTRINGW = (TV_FIRST + 64)1167TVM_GETISEARCHSTRING = TVM_GETISEARCHSTRINGA1168TVM_SETTOOLTIPS = (TV_FIRST + 24)1169TVM_GETTOOLTIPS = (TV_FIRST + 25)1170TVM_SETINSERTMARK = (TV_FIRST + 26)1171TVM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT1172TVM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT1173TVM_SETITEMHEIGHT = (TV_FIRST + 27)1174TVM_GETITEMHEIGHT = (TV_FIRST + 28)1175TVM_SETBKCOLOR = (TV_FIRST + 29)1176TVM_SETTEXTCOLOR = (TV_FIRST + 30)1177TVM_GETBKCOLOR = (TV_FIRST + 31)1178TVM_GETTEXTCOLOR = (TV_FIRST + 32)1179TVM_SETSCROLLTIME = (TV_FIRST + 33)1180TVM_GETSCROLLTIME = (TV_FIRST + 34)1181TVM_SETINSERTMARKCOLOR = (TV_FIRST + 37)1182TVM_GETINSERTMARKCOLOR = (TV_FIRST + 38)1183TVN_SELCHANGINGA = (TVN_FIRST-1)1184TVN_SELCHANGINGW = (TVN_FIRST-50)1185TVN_SELCHANGEDA = (TVN_FIRST-2)1186TVN_SELCHANGEDW = (TVN_FIRST-51)1187TVC_UNKNOWN = 01188TVC_BYMOUSE = 11189TVC_BYKEYBOARD = 21190TVN_GETDISPINFOA = (TVN_FIRST-3)1191TVN_GETDISPINFOW = (TVN_FIRST-52)1192TVN_SETDISPINFOA = (TVN_FIRST-4)1193TVN_SETDISPINFOW = (TVN_FIRST-53)1194TVIF_DI_SETITEM = 40961195TVN_ITEMEXPANDINGA = (TVN_FIRST-5)1196TVN_ITEMEXPANDINGW = (TVN_FIRST-54)1197TVN_ITEMEXPANDEDA = (TVN_FIRST-6)1198TVN_ITEMEXPANDEDW = (TVN_FIRST-55)1199TVN_BEGINDRAGA = (TVN_FIRST-7)1200TVN_BEGINDRAGW = (TVN_FIRST-56)1201TVN_BEGINRDRAGA = (TVN_FIRST-8)1202TVN_BEGINRDRAGW = (TVN_FIRST-57)1203TVN_DELETEITEMA = (TVN_FIRST-9)1204TVN_DELETEITEMW = (TVN_FIRST-58)1205TVN_BEGINLABELEDITA = (TVN_FIRST-10)1206TVN_BEGINLABELEDITW = (TVN_FIRST-59)1207TVN_ENDLABELEDITA = (TVN_FIRST-11)1208TVN_ENDLABELEDITW = (TVN_FIRST-60)1209TVN_KEYDOWN = (TVN_FIRST-12)1210TVN_GETINFOTIPA = (TVN_FIRST-13)1211TVN_GETINFOTIPW = (TVN_FIRST-14)1212TVN_SINGLEEXPAND = (TVN_FIRST-15)1213TVN_SELCHANGING = TVN_SELCHANGINGA1214TVN_SELCHANGED = TVN_SELCHANGEDA1215TVN_GETDISPINFO = TVN_GETDISPINFOA1216TVN_SETDISPINFO = TVN_SETDISPINFOA1217TVN_ITEMEXPANDING = TVN_ITEMEXPANDINGA1218TVN_ITEMEXPANDED = TVN_ITEMEXPANDEDA1219TVN_BEGINDRAG = TVN_BEGINDRAGA1220TVN_BEGINRDRAG = TVN_BEGINRDRAGA1221TVN_DELETEITEM = TVN_DELETEITEMA1222TVN_BEGINLABELEDIT = TVN_BEGINLABELEDITA1223TVN_ENDLABELEDIT = TVN_ENDLABELEDITA1224TVN_GETINFOTIP = TVN_GETINFOTIPA1225TVCDRF_NOIMAGES = 655361226WC_COMBOBOXEXA = "ComboBoxEx32"1227WC_COMBOBOXEX = WC_COMBOBOXEXA1228CBEIF_TEXT = 11229CBEIF_IMAGE = 21230CBEIF_SELECTEDIMAGE = 41231CBEIF_OVERLAY = 81232CBEIF_INDENT = 161233CBEIF_LPARAM = 321234CBEIF_DI_SETITEM = 2684354561235CBEM_INSERTITEMA = (WM_USER + 1)1236CBEM_SETIMAGELIST = (WM_USER + 2)1237CBEM_GETIMAGELIST = (WM_USER + 3)1238CBEM_GETITEMA = (WM_USER + 4)1239CBEM_SETITEMA = (WM_USER + 5)1240#CBEM_DELETEITEM = CB_DELETESTRING1241CBEM_GETCOMBOCONTROL = (WM_USER + 6)1242CBEM_GETEDITCONTROL = (WM_USER + 7)1243CBEM_SETEXSTYLE = (WM_USER + 8)  # use  SETEXTENDEDSTYLE instead1244CBEM_SETEXTENDEDSTYLE = (WM_USER + 14)   # lparam == new style, wParam (optional) == mask1245CBEM_GETEXSTYLE = (WM_USER + 9) # use GETEXTENDEDSTYLE instead1246CBEM_GETEXTENDEDSTYLE = (WM_USER + 9)1247CBEM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT1248CBEM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT1249CBEM_SETEXSTYLE = (WM_USER + 8)1250CBEM_GETEXSTYLE = (WM_USER + 9)1251CBEM_HASEDITCHANGED = (WM_USER + 10)1252CBEM_INSERTITEMW = (WM_USER + 11)1253CBEM_SETITEMW = (WM_USER + 12)1254CBEM_GETITEMW = (WM_USER + 13)1255CBEM_INSERTITEM = CBEM_INSERTITEMA1256CBEM_SETITEM = CBEM_SETITEMA1257CBEM_GETITEM = CBEM_GETITEMA1258CBES_EX_NOEDITIMAGE = 11259CBES_EX_NOEDITIMAGEINDENT = 21260CBES_EX_PATHWORDBREAKPROC = 41261CBES_EX_NOSIZELIMIT = 81262CBES_EX_CASESENSITIVE = 161263CBEN_GETDISPINFO = (CBEN_FIRST - 0)1264CBEN_GETDISPINFOA = (CBEN_FIRST - 0)1265CBEN_INSERTITEM = (CBEN_FIRST - 1)1266CBEN_DELETEITEM = (CBEN_FIRST - 2)1267CBEN_BEGINEDIT = (CBEN_FIRST - 4)1268CBEN_ENDEDITA = (CBEN_FIRST - 5)1269CBEN_ENDEDITW = (CBEN_FIRST - 6)1270CBEN_GETDISPINFOW = (CBEN_FIRST - 7)1271CBEN_DRAGBEGINA = (CBEN_FIRST - 8)1272CBEN_DRAGBEGINW = (CBEN_FIRST - 9)1273CBEN_DRAGBEGIN = CBEN_DRAGBEGINA1274CBEN_ENDEDIT = CBEN_ENDEDITA1275CBENF_KILLFOCUS = 11276CBENF_RETURN = 21277CBENF_ESCAPE = 31278CBENF_DROPDOWN = 41279CBEMAXSTRLEN = 2601280WC_TABCONTROLA = "SysTabControl32"1281WC_TABCONTROL = WC_TABCONTROLA1282TCS_SCROLLOPPOSITE = 1   # assumes multiline tab1283TCS_BOTTOM = 21284TCS_RIGHT = 21285TCS_MULTISELECT = 4  # allow multi-select in button mode1286TCS_FLATBUTTONS = 81287TCS_FORCEICONLEFT = 161288TCS_FORCELABELLEFT = 321289TCS_HOTTRACK = 641290TCS_VERTICAL = 1281291TCS_TABS = 01292TCS_BUTTONS = 2561293TCS_SINGLELINE = 01294TCS_MULTILINE = 5121295TCS_RIGHTJUSTIFY = 01296TCS_FIXEDWIDTH = 10241297TCS_RAGGEDRIGHT = 20481298TCS_FOCUSONBUTTONDOWN = 40961299TCS_OWNERDRAWFIXED = 81921300TCS_TOOLTIPS = 163841301TCS_FOCUSNEVER = 327681302TCS_EX_FLATSEPARATORS = 11303TCS_EX_REGISTERDROP = 21304TCM_GETIMAGELIST = (TCM_FIRST + 2)1305TCM_SETIMAGELIST = (TCM_FIRST + 3)1306TCM_GETITEMCOUNT = (TCM_FIRST + 4)1307TCIF_TEXT = 11308TCIF_IMAGE = 21309TCIF_RTLREADING = 41310TCIF_PARAM = 81311TCIF_STATE = 161312TCIS_BUTTONPRESSED = 11313TCIS_HIGHLIGHTED = 21314TCM_GETITEMA = (TCM_FIRST + 5)1315TCM_GETITEMW = (TCM_FIRST + 60)1316TCM_GETITEM = TCM_GETITEMA1317TCM_SETITEMA = (TCM_FIRST + 6)1318TCM_SETITEMW = (TCM_FIRST + 61)1319TCM_SETITEM = TCM_SETITEMA1320TCM_INSERTITEMA = (TCM_FIRST + 7)1321TCM_INSERTITEMW = (TCM_FIRST + 62)1322TCM_INSERTITEM = TCM_INSERTITEMA1323TCM_DELETEITEM = (TCM_FIRST + 8)1324TCM_DELETEALLITEMS = (TCM_FIRST + 9)1325TCM_GETITEMRECT = (TCM_FIRST + 10)1326TCM_GETCURSEL = (TCM_FIRST + 11)1327TCM_SETCURSEL = (TCM_FIRST + 12)1328TCHT_NOWHERE = 11329TCHT_ONITEMICON = 21330TCHT_ONITEMLABEL = 41331TCHT_ONITEM = (TCHT_ONITEMICON | TCHT_ONITEMLABEL)1332TCM_HITTEST = (TCM_FIRST + 13)1333TCM_SETITEMEXTRA = (TCM_FIRST + 14)1334TCM_ADJUSTRECT = (TCM_FIRST + 40)1335TCM_SETITEMSIZE = (TCM_FIRST + 41)1336TCM_REMOVEIMAGE = (TCM_FIRST + 42)1337TCM_SETPADDING = (TCM_FIRST + 43)1338TCM_GETROWCOUNT = (TCM_FIRST + 44)1339TCM_GETTOOLTIPS = (TCM_FIRST + 45)1340TCM_SETTOOLTIPS = (TCM_FIRST + 46)1341TCM_GETCURFOCUS = (TCM_FIRST + 47)1342TCM_SETCURFOCUS = (TCM_FIRST + 48)1343TCM_SETMINTABWIDTH = (TCM_FIRST + 49)1344TCM_DESELECTALL = (TCM_FIRST + 50)1345TCM_HIGHLIGHTITEM = (TCM_FIRST + 51)1346TCM_SETEXTENDEDSTYLE = (TCM_FIRST + 52)  # optional wParam == mask1347TCM_GETEXTENDEDSTYLE = (TCM_FIRST + 53)1348TCM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT1349TCM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT1350TCN_KEYDOWN = (TCN_FIRST - 0)1351ANIMATE_CLASSA = "SysAnimate32"1352ANIMATE_CLASS = ANIMATE_CLASSA1353ACS_CENTER = 11354ACS_TRANSPARENT = 21355ACS_AUTOPLAY = 41356ACS_TIMER = 8  # don't use threads... use timers1357ACM_OPENA = (WM_USER+100)1358ACM_OPENW = (WM_USER+103)1359ACM_OPEN = ACM_OPENW1360ACM_OPEN = ACM_OPENA1361ACM_PLAY = (WM_USER+101)1362ACM_STOP = (WM_USER+102)1363ACN_START = 11364ACN_STOP = 21365MONTHCAL_CLASSA = "SysMonthCal32"1366MONTHCAL_CLASS = MONTHCAL_CLASSA1367MCM_FIRST = 40961368MCM_GETCURSEL = (MCM_FIRST + 1)1369MCM_SETCURSEL = (MCM_FIRST + 2)1370MCM_GETMAXSELCOUNT = (MCM_FIRST + 3)1371MCM_SETMAXSELCOUNT = (MCM_FIRST + 4)1372MCM_GETSELRANGE = (MCM_FIRST + 5)1373MCM_SETSELRANGE = (MCM_FIRST + 6)1374MCM_GETMONTHRANGE = (MCM_FIRST + 7)1375MCM_SETDAYSTATE = (MCM_FIRST + 8)1376MCM_GETMINREQRECT = (MCM_FIRST + 9)1377MCM_SETCOLOR = (MCM_FIRST + 10)1378MCM_GETCOLOR = (MCM_FIRST + 11)1379MCSC_BACKGROUND = 0   # the background color (between months)1380MCSC_TEXT = 1   # the dates1381MCSC_TITLEBK = 2   # background of the title1382MCSC_TITLETEXT = 31383MCSC_MONTHBK = 4   # background within the month cal1384MCSC_TRAILINGTEXT = 5   # the text color of header & trailing days1385MCM_SETTODAY = (MCM_FIRST + 12)1386MCM_GETTODAY = (MCM_FIRST + 13)1387MCM_HITTEST = (MCM_FIRST + 14)1388MCHT_TITLE = 655361389MCHT_CALENDAR = 1310721390MCHT_TODAYLINK = 1966081391MCHT_NEXT = 16777216   # these indicate that hitting1392MCHT_PREV = 33554432  # here will go to the next/prev month1393MCHT_NOWHERE = 01394MCHT_TITLEBK = (MCHT_TITLE)1395MCHT_TITLEMONTH = (MCHT_TITLE | 1)1396MCHT_TITLEYEAR = (MCHT_TITLE | 2)1397MCHT_TITLEBTNNEXT = (MCHT_TITLE | MCHT_NEXT | 3)1398MCHT_TITLEBTNPREV = (MCHT_TITLE | MCHT_PREV | 3)1399MCHT_CALENDARBK = (MCHT_CALENDAR)1400MCHT_CALENDARDATE = (MCHT_CALENDAR | 1)1401MCHT_CALENDARDATENEXT = (MCHT_CALENDARDATE | MCHT_NEXT)1402MCHT_CALENDARDATEPREV = (MCHT_CALENDARDATE | MCHT_PREV)1403MCHT_CALENDARDAY = (MCHT_CALENDAR | 2)1404MCHT_CALENDARWEEKNUM = (MCHT_CALENDAR | 3)1405MCM_SETFIRSTDAYOFWEEK = (MCM_FIRST + 15)1406MCM_GETFIRSTDAYOFWEEK = (MCM_FIRST + 16)1407MCM_GETRANGE = (MCM_FIRST + 17)1408MCM_SETRANGE = (MCM_FIRST + 18)1409MCM_GETMONTHDELTA = (MCM_FIRST + 19)1410MCM_SETMONTHDELTA = (MCM_FIRST + 20)1411MCM_GETMAXTODAYWIDTH = (MCM_FIRST + 21)1412MCM_SETUNICODEFORMAT = CCM_SETUNICODEFORMAT1413MCM_GETUNICODEFORMAT = CCM_GETUNICODEFORMAT1414MCN_SELCHANGE = (MCN_FIRST + 1)1415MCN_GETDAYSTATE = (MCN_FIRST + 3)1416MCN_SELECT = (MCN_FIRST + 4)1417MCS_DAYSTATE = 11418MCS_MULTISELECT = 21419MCS_WEEKNUMBERS = 41420MCS_NOTODAYCIRCLE = 81421MCS_NOTODAY = 161422MCS_NOTODAY = 81423GMR_VISIBLE = 0       # visible portion of display1424GMR_DAYSTATE = 1       # above plus the grayed out parts of1425DATETIMEPICK_CLASSA = "SysDateTimePick32"1426DATETIMEPICK_CLASS = DATETIMEPICK_CLASSA1427DTM_FIRST = 40961428DTM_GETSYSTEMTIME = (DTM_FIRST + 1)1429DTM_SETSYSTEMTIME = (DTM_FIRST + 2)1430DTM_GETRANGE = (DTM_FIRST + 3)1431DTM_SETRANGE = (DTM_FIRST + 4)1432DTM_SETFORMATA = (DTM_FIRST + 5)1433DTM_SETFORMATW = (DTM_FIRST + 50)1434DTM_SETFORMAT = DTM_SETFORMATW1435DTM_SETFORMAT = DTM_SETFORMATA1436DTM_SETMCCOLOR = (DTM_FIRST + 6)1437DTM_GETMCCOLOR = (DTM_FIRST + 7)1438DTM_GETMONTHCAL = (DTM_FIRST + 8)1439DTM_SETMCFONT = (DTM_FIRST + 9)1440DTM_GETMCFONT = (DTM_FIRST + 10)1441DTS_UPDOWN = 1 # use UPDOWN instead of MONTHCAL1442DTS_SHOWNONE = 2 # allow a NONE selection1443DTS_SHORTDATEFORMAT = 0 # use the short date format (app must forward WM_WININICHANGE messages)1444DTS_LONGDATEFORMAT = 4 # use the long date format (app must forward WM_WININICHANGE messages)1445DTS_TIMEFORMAT = 9 # use the time format (app must forward WM_WININICHANGE messages)1446DTS_APPCANPARSE = 16 # allow user entered strings (app MUST respond to DTN_USERSTRING)1447DTS_RIGHTALIGN = 32 # right-align popup instead of left-align it1448DTN_DATETIMECHANGE = (DTN_FIRST + 1) # the systemtime has changed1449DTN_USERSTRINGA = (DTN_FIRST + 2) # the user has entered a string1450DTN_USERSTRINGW = (DTN_FIRST + 15)1451DTN_USERSTRING = DTN_USERSTRINGW1452DTN_WMKEYDOWNA = (DTN_FIRST + 3) # modify keydown on app format field (X)1453DTN_WMKEYDOWNW = (DTN_FIRST + 16)1454DTN_WMKEYDOWN = DTN_WMKEYDOWNA1455DTN_FORMATA = (DTN_FIRST + 4) # query display for app format field (X)1456DTN_FORMATW = (DTN_FIRST + 17)1457DTN_FORMAT = DTN_FORMATA1458DTN_FORMATQUERYA = (DTN_FIRST + 5) # query formatting info for app format field (X)1459DTN_FORMATQUERYW = (DTN_FIRST + 18)1460DTN_FORMATQUERY = DTN_FORMATQUERYA1461DTN_DROPDOWN = (DTN_FIRST + 6) # MonthCal has dropped down1462DTN_CLOSEUP = (DTN_FIRST + 7) # MonthCal is popping up1463GDTR_MIN = 11464GDTR_MAX = 21465GDT_ERROR = -11466GDT_VALID = 01467GDT_NONE = 11468IPM_CLEARADDRESS = (WM_USER+100) # no parameters1469IPM_SETADDRESS = (WM_USER+101) # lparam = TCP/IP address1470IPM_GETADDRESS = (WM_USER+102) # lresult = # of non black fields.  lparam = LPDWORD for TCP/IP address1471IPM_SETRANGE = (WM_USER+103) # wparam = field, lparam = range1472IPM_SETFOCUS = (WM_USER+104) # wparam = field1473IPM_ISBLANK = (WM_USER+105) # no parameters1474WC_IPADDRESSA = "SysIPAddress32"1475WC_IPADDRESS = WC_IPADDRESSA1476IPN_FIELDCHANGED = (IPN_FIRST - 0)1477WC_PAGESCROLLERA = "SysPager"1478WC_PAGESCROLLER = WC_PAGESCROLLERA1479PGS_VERT = 01480PGS_HORZ = 11481PGS_AUTOSCROLL = 21482PGS_DRAGNDROP = 41483PGF_INVISIBLE = 0      # Scroll button is not visible1484PGF_NORMAL = 1      # Scroll button is in normal state1485PGF_GRAYED = 2      # Scroll button is in grayed state1486PGF_DEPRESSED = 4      # Scroll button is in depressed state1487PGF_HOT = 8      # Scroll button is in hot state1488PGB_TOPORLEFT = 01489PGB_BOTTOMORRIGHT = 11490PGM_SETCHILD = (PGM_FIRST + 1)  # lParam == hwnd1491PGM_RECALCSIZE = (PGM_FIRST + 2)1492PGM_FORWARDMOUSE = (PGM_FIRST + 3)1493PGM_SETBKCOLOR = (PGM_FIRST + 4)1494PGM_GETBKCOLOR = (PGM_FIRST + 5)1495PGM_SETBORDER = (PGM_FIRST + 6)1496PGM_GETBORDER = (PGM_FIRST + 7)1497PGM_SETPOS = (PGM_FIRST + 8)1498PGM_GETPOS = (PGM_FIRST + 9)1499PGM_SETBUTTONSIZE = (PGM_FIRST + 10)1500PGM_GETBUTTONSIZE = (PGM_FIRST + 11)1501PGM_GETBUTTONSTATE = (PGM_FIRST + 12)1502PGM_GETDROPTARGET = CCM_GETDROPTARGET1503PGN_SCROLL = (PGN_FIRST-1)1504PGF_SCROLLUP = 11505PGF_SCROLLDOWN = 21506PGF_SCROLLLEFT = 41507PGF_SCROLLRIGHT = 81508PGK_SHIFT = 11509PGK_CONTROL = 21510PGK_MENU = 41511PGN_CALCSIZE = (PGN_FIRST-2)1512PGF_CALCWIDTH = 11513PGF_CALCHEIGHT = 21514WC_NATIVEFONTCTLA = "NativeFontCtl"1515WC_NATIVEFONTCTL = WC_NATIVEFONTCTLA1516NFS_EDIT = 11517NFS_STATIC = 21518NFS_LISTCOMBO = 41519NFS_BUTTON = 81520NFS_ALL = 161521WM_MOUSEHOVER = 6731522WM_MOUSELEAVE = 6751523TME_HOVER = 11524TME_LEAVE = 21525TME_QUERY = 10737418241526TME_CANCEL = -21474836481527HOVER_DEFAULT = -11528WSB_PROP_CYVSCROLL = 0x000000011529WSB_PROP_CXHSCROLL = 0x000000021530WSB_PROP_CYHSCROLL = 0x000000041531WSB_PROP_CXVSCROLL = 0x000000081532WSB_PROP_CXHTHUMB = 0x000000101533WSB_PROP_CYVTHUMB = 0x000000201534WSB_PROP_VBKGCOLOR = 0x000000401535WSB_PROP_HBKGCOLOR = 0x000000801536WSB_PROP_VSTYLE = 0x000001001537WSB_PROP_HSTYLE = 0x000002001538WSB_PROP_WINSTYLE = 0x000004001539WSB_PROP_PALETTE = 0x000008001540WSB_PROP_MASK = 0x00000FFF1541FSB_FLAT_MODE = 21542FSB_ENCARTA_MODE = 11543FSB_REGULAR_MODE = 01544def INDEXTOOVERLAYMASK(i):1545    return i << 81546def INDEXTOSTATEIMAGEMASK(i):...

Full Screen

Full Screen

handle.py

Source:handle.py Github

copy

Full Screen

...238        yield scrapy.Request("http://www.realax.cn/browse?type=dateissued", callback=self.parse_first)239        yield scrapy.Request("http://ir.sia.cn/browse?type=dateissued", callback=self.parse_first)240        yield scrapy.Request("http://ir.stlib.cn/browse?type=dateissued", callback=self.parse_first)241        # yield scrapy.Request("")242    def parse_first(self, response):243        self.log("Crawled %s %d" % (response.url, response.status), level=scrapy.log.INFO)244        if response.status / 100 != 2:245            return246        # 从网页中提取最大文档数量,用于构造索引页翻页247        ret = re.search("var totalItemCount = (\d+);", response.body)248        totalItemCount = 0249        if ret:250            totalItemCount = int(ret.groups()[0])251            self.log("Parse %s totalItemCount %d" % (response.url, totalItemCount), level=scrapy.log.INFO)252        else:253            self.log("Parse %s totalItemCount NULL" % (response.url), level=scrapy.log.INFO)254        offset = 0255        # site = get_url_site(response.url)256        # 构造翻页并抓取...

Full Screen

Full Screen

ProjectIVs.py

Source:ProjectIVs.py Github

copy

Full Screen

1import numpy as np2from sklearn.linear_model import LogisticRegression3import statsmodels.formula.api as smf4import matplotlib5matplotlib.use("TkAgg")6from matplotlib import pyplot as plt7from scipy.special import expit8#matplotlib inline9from sklearn.linear_model import LassoCV10from sklearn.linear_model import Ridge11from sklearn.linear_model import LinearRegression12from sklearn.metrics.pairwise import manhattan_distances13import statsmodels.api as sm14from scipy import stats15from linearmodels.iv import IV2SLS16import os, glob17import pandas as pd18#merge sessions19path = "/Users/antoniomoshe/OneDrive - Technion/TECHNION PHD/Winter 2020/Casuality/Devouir_4/Sessions"20all_files = glob.glob(os.path.join(path, "sessions*.csv"))21sessions_month= pd.concat([pd.read_csv(f) for f in all_files])22#---23len(sessions_month) #502,03324#calculate average service time per hour25sessions_month.columns26sessions_AcceptedInvo = sessions_month[sessions_month[" outcome"] < 5]27(sessions_AcceptedInvo[" queue_sec"] == 0).sum() #all are known abandonments28sessions_AcceptedInvo = sessions_AcceptedInvo[sessions_AcceptedInvo[" queue_sec"] > 0]29len(sessions_AcceptedInvo) #2338330#get StartDay and StartHour for invitation acceptance time ------31#convert strings into date32sessions_AcceptedInvo[' invitation_submit_date'] =\33    pd.to_datetime(sessions_AcceptedInvo[' invitation_submit_date'],\34                                      format=' %d/%m/%Y %H:%M:%S')35sessions_AcceptedInvo[' Invitation_Acep_Day_of_week']=\36    sessions_AcceptedInvo[' invitation_submit_date'].dt.dayofweek37sessions_AcceptedInvo['Invitation_Acep_Hour']=\38    sessions_AcceptedInvo[' invitation_submit_date'].dt.hour39#Treatment Wait variable ---Ö±40#short wait is the treatment i would expect them to buy41sessions_AcceptedInvo['WaitTreatment'] = np.where(sessions_AcceptedInvo[' queue_sec']< 60, 1, 0)42#----43sessions_AcceptedInvo['Y'] =\44    np.where(sessions_AcceptedInvo[' conversion_time']> 0, 1, 0)45#calculate total service duration46timezero=sessions_AcceptedInvo[" invitation_submit_time"].min()47sessions_AcceptedInvo['dummy'] =\48sessions_AcceptedInvo[" end_time"]- \49    sessions_AcceptedInvo[" chat_start_time"]50#known abandonments have no service time51sessions_AcceptedInvo['Total_Service_Duration'] =\52    np.where(sessions_AcceptedInvo['dummy']>= timezero, 0, sessions_AcceptedInvo['dummy'])53sessions_AcceptedInvo.drop('dummy', inplace=True, axis=1)54#write csv55sessions_AcceptedInvo.to_csv("sessions_AcceptedInvo.csv")56#using closure time57timemax=sessions_AcceptedInvo[" invitation_submit_time"].max()58#time in seconds59numberofbins=round((timemax-timezero)/3600)60sessions_AcceptedInvo['dummy'] =\61sessions_AcceptedInvo[" end_time"]- \62    sessions_AcceptedInvo[" chat_start_time"]63#known abandonments have no service time64sessions_AcceptedInvo['Total_Service_Duration'] =\65    np.where(sessions_AcceptedInvo['dummy']>= timezero, 0, sessions_AcceptedInvo['dummy'])66sessions_AcceptedInvo.drop('dummy', inplace=True, axis=1)67sessions_AcceptedInvo['Total_Service_Duration'].mean()68( (sessions_AcceptedInvo[' outcome']==1).sum()+(sessions_AcceptedInvo[' outcome']==2).sum()) \69    /  (sessions_AcceptedInvo[' queue_sec'].sum())70#check with linear regression what influences outcome Y -----71#and also is data for other treatments72dataForRegression = pd.read_csv('DataForRegression.csv', index_col=0)73regresion_check = IV2SLS(dataForRegression.Y,\74                         dataForRegression[['queue_sec','invite_type', 'engagement_skill','target_skill','region','city','country','continent','user_os',\75                                             'browser','score','other_time','other_lines','other_number_words',\76                                            'inner_wait', 'visitor_duration',\77                                            'agent_duration', 'visitor_number_words', 'agent_number_words',\78                                        	'visitor_lines', 'agent_lines',	\79                                            'total_canned_lines', 'average_sent', 'min_sent', 'max_sent', 'n_sent_pos', 'n_sent_neg',	'first_sent',\80                                            'last_sent', 'id_rep_code', \81                                            'Invitation_Acep_Day_of_week', 'Invitation_Acep_Hour', \82                                            'NumberofAssigned', 'NumberofAssignedwhenAssigned', \83                                            'Rho_atarrival',\84                                             ]], None, None).fit(cov_type='unadjusted')85print(regresion_check)86regresion_check2 = IV2SLS(dataForRegression.Y,\87                         dataForRegression[['queue_sec','invite_type', 'engagement_skill','target_skill','score','other_time',\88                                            'agent_number_words',\89                                        	'visitor_lines', 'agent_lines',	\90                                             ]], None, None).fit(cov_type='unadjusted')91print(regresion_check2)92#-----93res_first = IV2SLS(dataFirstT.WaitTreatment,dataFirstT.iloc[:, 1:14], None, None).fit(cov_type='unadjusted')94res_first = IV2SLS(dataFirstT.WaitTreatment,dataFirstT.iloc[:, 1:14], None, None).fit(cov_type='unadjusted')95print(res_first)96res_second = IV2SLS(dataFirstT.Y,dataFirstT[['region','city','country','continent','user_os',\97                                             'browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour'\98                                             ]],\99                    dataFirstT.queue_sec*60, dataFirstT[['Rho_atarrival','invite_type',\100                                             'engagement_skill','target_skill'\101                                             ]]).fit(cov_type='unadjusted')102def covariance(x, y):103    # Finding the mean of the series x and y104    mean_x = sum(x)/float(len(x))105    mean_y = sum(y)/float(len(y))106    # Subtracting mean from the individual elements107    sub_x = [i - mean_x for i in x]108    sub_y = [i - mean_y for i in y]109    numerator = sum([sub_x[i]*sub_y[i] for i in range(len(sub_x))])110    denominator = len(x)-1111    cov = numerator/denominator112    return cov113covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)114#-0.12115corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\116        'engagement_skill','target_skill']].corr()117#FIRST TREATMENT118#data that we are using after fix in Matlab119dataFirstTi = pd.read_csv('DataForFirstTreatment.csv', index_col=0)120len(dataFirstTi) #23383121#get only service customers122dataFirstT=dataFirstTi123#len(dataFirstT) #13345124dataFirstT.WaitTreatment\125    = np.where(dataFirstT['queue_sec']< 30, 1, 0)126dataFirstT.WaitTreatment\127    = np.where(dataFirstT['queue_sec']< 60, 1, 0)128#dataFirstT['RhoBinary']\129#    = np.where(dataFirstT['Rho_atarrival']< 1, 0, 1)130dFT=dataFirstT[[\131'invite_type','region','city','engagement_skill','target_skill','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour','Rho_atarrival','WaitTreatment','Y'\132]]133modelP = LogisticRegression(max_iter=10000)134FirstX = dataFirstT[[\135                     'Invitation_Acep_Hour', \136                    'Rho_atarrival', 'invite_type', \137                    'engagement_skill','target_skill',\138                    'Invitation_Acep_Day_of_week',\139                    'score','region','city','country','continent',\140                    'user_os','browser'\141                     ]]142#Wait time143FirstY = dataFirstT.WaitTreatment144modelP.fit(FirstX, FirstY)145#reg2 = LinearRegression().fit(FirstX, FirstY)146First_Propensityscore = np.asarray(modelP.predict_proba(FirstX))147treatment_plt=plt.hist(First_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')148cont_plt=plt.hist(First_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')149plt.legend();150plt.xlabel('propensity score');151plt.ylabel('number of units');152plt.savefig('prop_score_wait_60000.pdf',format='pdf')153#hist, bin_edges = np.histogram(First_Propensityscore[:, 1])154FirstIndex=\155np.where((First_Propensityscore[:, 1] < 0.59)& (First_Propensityscore[:, 1] > 0.41))156First_PropensityscoreB=\157First_Propensityscore[FirstIndex[0]]158treatment_plt1B=plt.hist(First_PropensityscoreB[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')159cont_plt1B=plt.hist(First_PropensityscoreB[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')160plt.legend();161plt.xlabel('propensity score');162plt.ylabel('number of units');163plt.savefig('prop_score_wait_6000000_Last.pdf',format='pdf')164dataFirstT2=dFT.iloc[FirstIndex[0]]165len(dataFirstT2) #30 sec 10041 #60 sec 6,316166len(dataFirstT) #23383167ATE_IPW=(((dataFirstT2['WaitTreatment']*dataFirstT2['Y'])/(First_PropensityscoreB[:, 1])).sum())*(1/len(dataFirstT2))\168-( ( ( (1-dataFirstT2['WaitTreatment'])*dataFirstT2['Y'] )/(First_PropensityscoreB[:, 0]) ).sum())*(1/len(dataFirstT2))169dataFirstT.groupby("Y")["queue_sec"].mean()170#Out[132]:171#Y172#0    70.728748173#1    48.358257174# ----- T-learner --------175#dataFirstTB = dataFirstT2[[\176#                     'Invitation_Acep_Hour', \177#                    'Rho_atarrival', 'invite_type', \178#                     'engagement_skill', 'target_skill',\179#                     'WaitTreatment', 'Y']]180dataFirstTB=dataFirstT2181dataFirstTB0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]182dataFirstTB0 = dataFirstTB0.drop(["WaitTreatment"], axis=1)183dataFirstTB0x = dataFirstTB0.iloc[:, :-1]184dataFirstTB0Y = dataFirstTB0['Y']185dataFirstTBx = dataFirstTB.iloc[:, :-1]186dataFirstTBx = dataFirstTBx.drop(["WaitTreatment"], axis=1)187dataFirstTB1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]188dataFirstTB1 = dataFirstTB1.drop(["WaitTreatment"], axis=1)189dataFirstTB1x = dataFirstTB1.iloc[:, :-1]190dataFirstTB1Y = dataFirstTB1['Y']191model_0 = LassoCV()192model_1 = LassoCV()193model_0.fit(dataFirstTB0x, dataFirstTB0Y)194model_1.fit(dataFirstTB1x, dataFirstTB1Y)195prediction0 = model_0.predict(dataFirstTBx)196prediction1 = model_1.predict(dataFirstTBx)197ATE_TLearner = float((prediction1-prediction0).sum()/len(dataFirstTBx))198# ----- T-learner --------199# ------- S-Learner ---------200dataFirstTBX = dataFirstTB.iloc[:, :-1]201dataFirstTBY = dataFirstTB['Y']202modelS = Ridge()203modelS.fit(dataFirstTBX, dataFirstTBY)204#T=1205dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]206dummT1x = dataFirstTB.iloc[:, :-1]207predictionUn = modelS.predict(dummT1x)208dummT1["WaitTreatment"] = 0209dummT1x = dummT1.iloc[:, :-1]210predictionZe = modelS.predict(dummT1x)211ATE_SLearner = (predictionUn.sum() / len(dummT1)) - (predictionZe.sum() / len(dummT1))212# ------- S-Learner ---------213# ---------matching---------214#T=0215dummT0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]216dummT0 = dummT0.drop(["WaitTreatment"], axis=1)217dummT0x = dummT0.iloc[:, :-1]218dummT0Y = dummT0['Y']219#T=1220dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]221dummT1 = dummT1.drop(["WaitTreatment"], axis=1)222dummT1x = dummT1.iloc[:, :-1]223dummT1Y = dummT1['Y']224dummT0V = dummT0.values225dummT1V = dummT1.values226dummT1XV=dummT1x.values227dummT0XV=dummT0x.values228ITE = []229for row in dummT1V:230    dif=abs(row[:-1]-dummT0V[:,:-1])231    #index232    #dif.argmin()233    #value234    distance=row[-1]-dummT0V[dif.argmin(),-1]235    ITE.append(distance)236#Sum of the Treated/number of Treated237ATE_Matchingb = float(sum(ITE))/float(len(dataFirstTB))238# ---------matching---------239#-----------IV's-------------240corralation=dataFirstTB.corr()241res_second = IV2SLS(dataFirstTB.Y,dataFirstTB[['invite_type','engagement_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Hour','Invitation_Acep_Day_of_week']],\242                    dataFirstTB.WaitTreatment, dataFirstTB.Rho_atarrival).fit(cov_type='unadjusted')243print(res_second)244covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)245#-0.12246corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\247        'engagement_skill','target_skill']].corr()248#-----------IV's-------------249# treatment two inner Wait ------250dataForRegression['IW_Treatment'] = np.where(dataForRegression['other_time']< 30, 1, 0)251#120 #130252modelP2 = LogisticRegression(max_iter=10000)253SecondX = dataForRegression[[\254                     'invite_type', 'engagement_skill','target_skill','region','city','country','continent','user_os',\255                                             'browser','score','other_number_words',\256                                            'visitor_duration',\257                                            'agent_duration', 'visitor_number_words', 'agent_number_words',\258                                            'total_canned_lines', 'average_sent', 'min_sent', 'max_sent', 'n_sent_pos', 'n_sent_neg',	'first_sent',\259                                            'last_sent', 'id_rep_code', \260                                            'Invitation_Acep_Day_of_week', 'Invitation_Acep_Hour', \261                                            'NumberofAssigned', 'NumberofAssignedwhenAssigned', \262                     ]]263SecondY = dataForRegression.IW_Treatment264modelP2.fit(SecondX, SecondY)265Second_Propensityscore = np.asarray(modelP2.predict_proba(SecondX))266treatment_plt2=plt.hist(Second_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')267cont_plt2=plt.hist(Second_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')268plt.legend();269plt.xlabel('propensity score');270plt.ylabel('number of units');271plt.savefig('prop_score_IW2_b.pdf',format='pdf')272ATE_IPW2=(((dataForRegression['IW_Treatment']*dataForRegression['Y'])/(Second_Propensityscore[:, 1])).sum())*(1/len(dataForRegression))\273-( ( ( (1-dataForRegression['IW_Treatment'])*dataForRegression['Y'] )/(Second_Propensityscore[:, 0]) ).sum())*(1/len(dataForRegression))274dataForRegression.groupby("Y")["other_time"].mean()275#Out[132]:276#Y277#0    139.905420278#1    237.277638279dataFirstTB = dataForRegression[[\280                     'invite_type', 'engagement_skill','target_skill','region','city','country','continent','user_os',\281                                             'browser','score','other_number_words',\282                                            'visitor_duration',\283                                            'agent_duration', 'visitor_number_words', 'agent_number_words',\284                                            'total_canned_lines', 'average_sent', 'min_sent', 'max_sent', 'n_sent_pos', 'n_sent_neg',	'first_sent',\285                                            'last_sent', 'id_rep_code', \286                                            'Invitation_Acep_Day_of_week', 'Invitation_Acep_Hour', \287                                            'NumberofAssigned', 'NumberofAssignedwhenAssigned','IW_Treatment','Y',\288                     ]]289dataFirstTB0 = dataFirstTB[dataFirstTB["IW_Treatment"] == 0]290dataFirstTB0 = dataFirstTB0.drop(["IW_Treatment"], axis=1)291dataFirstTB0x = dataFirstTB0.iloc[:, :-1]292dataFirstTB0Y = dataFirstTB0['Y']293dataFirstTBx = dataFirstTB.iloc[:, :-1]294dataFirstTBx = dataFirstTBx.drop(["IW_Treatment"], axis=1)295dataFirstTB1 = dataFirstTB[dataFirstTB["IW_Treatment"] == 1]296dataFirstTB1 = dataFirstTB1.drop(["IW_Treatment"], axis=1)297dataFirstTB1x = dataFirstTB1.iloc[:, :-1]298dataFirstTB1Y = dataFirstTB1['Y']299model_0 = LassoCV()300model_1 = LassoCV()301model_0.fit(dataFirstTB0x, dataFirstTB0Y)302model_1.fit(dataFirstTB1x, dataFirstTB1Y)303prediction0 = model_0.predict(dataFirstTBx)304prediction1 = model_1.predict(dataFirstTBx)305ATE_TLearner2 = float((prediction1-prediction0).sum()/len(dataFirstTBx))306#S-Learner307dataFirstTBX = dataFirstTB.iloc[:, :-1]308dataFirstTBY = dataFirstTB['Y']309modelS = Ridge()310modelS.fit(dataFirstTBX, dataFirstTBY)311#T=1312dummT1 = dataFirstTB[dataFirstTB["IW_Treatment"] == 1]313dummT1x = dataFirstTB.iloc[:, :-1]314predictionUn = modelS.predict(dummT1x)315dummT1["IW_Treatment"] = 0316dummT1x = dummT1.iloc[:, :-1]317predictionZe = modelS.predict(dummT1x)318ATE_SLearner2 = (predictionUn.sum() / len(dummT1)) - (predictionZe.sum() / len(dummT1))319# ---------matching---------320#T=0321dummT0 = dataFirstTB[dataFirstTB["IW_Treatment"] == 0]322dummT0 = dummT0.drop(["IW_Treatment"], axis=1)323dummT0x = dummT0.iloc[:, :-1]324dummT0Y = dummT0['Y']325#T=1326dummT1 = dataFirstTB[dataFirstTB["IW_Treatment"] == 1]327dummT1 = dummT1.drop(["IW_Treatment"], axis=1)328dummT1x = dummT1.iloc[:, :-1]329dummT1Y = dummT1['Y']330dummT0V = dummT0.values331dummT1V = dummT1.values332dummT1XV=dummT1x.values333dummT0XV=dummT0x.values334ITE = []335for row in dummT1V:336    dif=abs(row[:-1]-dummT0V[:,:-1])337    #index338    #dif.argmin()339    #value340    distance=row[-1]-dummT0V[dif.argmin(),-1]341    ITE.append(distance)342#Sum of the Treated/number of343ATE_Matchingb2 = float(sum(ITE))/float(len(dataFirstTB))344#--------345corralation=dataFirstTB.corr()346res_second = IV2SLS(dataFirstTB.Y,dataFirstTB[[\347                     'invite_type', 'engagement_skill','target_skill','region','city','country','continent','user_os',\348                                             'browser','score','other_number_words',\349                                            'visitor_duration',\350                                            'agent_duration', 'visitor_number_words', 'agent_number_words',\351                                            'total_canned_lines', 'average_sent', 'min_sent', 'max_sent', 'n_sent_pos', 'n_sent_neg',	'first_sent',\352                                            'last_sent', 'id_rep_code', \353                                            'Invitation_Acep_Day_of_week', 'Invitation_Acep_Hour', \354                                            \355                     ]],\356                    dataFirstTB.IW_Treatment,dataFirstTB.NumberofAssigned).fit(cov_type='unadjusted')357print(res_second)358covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)359#-0.12360corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\361        'engagement_skill','target_skill']].corr()362#treatment 3 Invitation type363DataForThirdTreatment = pd.read_csv('DataForThirdTreatment.csv', index_col=0)364modelP3 = LogisticRegression(max_iter=10000)365ThirdX = DataForThirdTreatment[[\366                     'region','city','country','continent','user_os', 'browser', 'score',\367                    'Arrival_Day_of_week','Arrival_Hour',\368                    'LOS_in_website_before_invorRequest',\369                     ]]370ThirdY = DataForThirdTreatment.InvT371modelP3.fit(ThirdX, ThirdY)372Third_Propensityscore = np.asarray(modelP3.predict_proba(ThirdX))373treatment_plt3=plt.hist(Third_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')374cont_plt3=plt.hist(Third_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')375plt.legend();376plt.xlabel('propensity score');377plt.ylabel('number of units');378plt.savefig('prop_score_Inv.pdf',format='pdf')379ThirdIndex=\380np.where((Third_Propensityscore[:,1] < 0.8)& (Third_Propensityscore[:,1]  > 0.25))381Third_PropensityscoreB=\382Third_Propensityscore[ThirdIndex[0]]383treatment_plt3B=plt.hist(Third_PropensityscoreB[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')384cont_plt3B=plt.hist(Third_PropensityscoreB[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')385plt.legend();386plt.xlabel('propensity score');387plt.ylabel('number of units');388plt.savefig('prop_score_Inv2.pdf',format='pdf')389datathird=DataForThirdTreatment[[\390                     'region','city','country','continent','user_os', 'browser', 'score',\391                    'Arrival_Day_of_week','Arrival_Hour',\392                    'LOS_in_website_before_invorRequest',\393                     'InvT','Y']]394dataFirstT2=datathird.iloc[ThirdIndex[0]]395len(dataFirstT2) #6387396len(dataFirstT) #23383397ATE_IPW=(((dataFirstT2['InvT']*dataFirstT2['Y'])/(Third_PropensityscoreB[:, 1])).sum())*(1/len(dataFirstT2))\398-( ( ( (1-dataFirstT2['InvT'])*dataFirstT2['Y'] )/(Third_PropensityscoreB[:, 0]) ).sum())*(1/len(dataFirstT2))399dataFirstT.groupby("Y")["queue_sec"].mean()400#Out[132]:401#Y402#0    70.728748403#1    48.358257404dataFirstTB0 = datathird[datathird["InvT"] == 0]405dataFirstTB0 = dataFirstTB0.drop(["InvT"], axis=1)406dataFirstTB0x = dataFirstTB0.iloc[:, :-1]407dataFirstTB0Y = dataFirstTB0['Y']408dataFirstTBx = datathird.iloc[:, :-1]409dataFirstTBx = dataFirstTBx.drop(["InvT"], axis=1)410dataFirstTB1 = datathird[datathird["InvT"] == 1]411dataFirstTB1 = dataFirstTB1.drop(["InvT"], axis=1)412dataFirstTB1x = dataFirstTB1.iloc[:, :-1]413dataFirstTB1Y = dataFirstTB1['Y']414model_0 = LinearRegression()415model_1 = LinearRegression()416model_0.fit(dataFirstTB0x, dataFirstTB0Y)417model_1.fit(dataFirstTB1x, dataFirstTB1Y)418prediction0 = model_0.predict(dataFirstTBx)419prediction1 = model_1.predict(dataFirstTBx)420ATE_TLearner3 = float((prediction1-prediction0).sum()/len(dataFirstTBx))421#S-Learner422dataFirstTBX = datathird.iloc[:, :-1]423dataFirstTBY = datathird['Y']424modelS = Ridge()425modelS.fit(dataFirstTBX, dataFirstTBY)426#T=1427dummT1 = datathird[datathird["InvT"] == 1]428dummT1x = datathird.iloc[:, :-1]429predictionUn = modelS.predict(dummT1x)430dummT1["InvT"] = 0431dummT1x = dummT1.iloc[:, :-1]432predictionZe = modelS.predict(dummT1x)...

Full Screen

Full Screen

OWTiii.py

Source:OWTiii.py Github

copy

Full Screen

1import numpy as np2from sklearn.linear_model import LogisticRegression3import statsmodels.formula.api as smf4import matplotlib5matplotlib.use("TkAgg")6from matplotlib import pyplot as plt7from scipy.special import expit8#matplotlib inline9from sklearn.linear_model import LassoCV10from sklearn.linear_model import Ridge11from sklearn.linear_model import LinearRegression12import statsmodels.api as sm13from scipy import stats14from linearmodels.iv import IV2SLS15import os, glob16import pandas as pd17#FIRST TREATMENT iii18dataFirstT = pd.read_csv('DataForFirstTreatmentiii.csv', index_col=0)19len(dataFirstT)#12,34320dataFirstT.WaitTreatment\21    = np.where(dataFirstT['queue_sec']< 30, 1, 0)22dataFirstT.WaitTreatment\23    = np.where(dataFirstT['queue_sec']< 60, 1, 0)24dFT=dataFirstT[[\25'invite_type','engagement_skill','target_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour','Rho_atarrival','WaitTreatment','Y'\26]]27modelP = LogisticRegression(max_iter=10000)28FirstX = dataFirstT[[\29                     'Invitation_Acep_Hour', \30                    'Rho_atarrival', 'invite_type', \31                     'engagement_skill', 'target_skill',\32                    'Invitation_Acep_Day_of_week',\33                    'score','region','city','country','continent',\34                    'user_os','browser'\35                     ]]36#Wait time37FirstY = dataFirstT.WaitTreatment38modelP.fit(FirstX, FirstY)39reg2 = LinearRegression().fit(FirstX, FirstY)40First_Propensityscore = np.asarray(modelP.predict_proba(FirstX))41treatment_plt=plt.hist(First_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')42cont_plt=plt.hist(First_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')43plt.legend();44plt.xlabel('propensity score');45plt.ylabel('number of units');46plt.savefig('prop_score_wait30iii.pdf',format='pdf')47#hist, bin_edges = np.histogram(First_Propensityscore[:, 1])48FirstIndex=\49np.where((First_Propensityscore[:, 1] < 0.55)& (First_Propensityscore[:, 1] > 0.46))50First_PropensityscoreB=\51First_Propensityscore[FirstIndex[0]]52treatment_plt1B=plt.hist(First_PropensityscoreB[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')53cont_plt1B=plt.hist(First_PropensityscoreB[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')54plt.legend();55plt.xlabel('propensity score');56plt.ylabel('number of units');57plt.savefig('prop_score_wait302iii.pdf',format='pdf')58dataFirstT2=dFT.iloc[FirstIndex[0]]59len(dataFirstT2) #30 sec #1295 #60 sec #4,67560len(dataFirstT) #2338361ATE_IPWii=(((dataFirstT2['WaitTreatment']*dataFirstT2['Y'])/(First_PropensityscoreB[:, 1])).sum())*(1/len(dataFirstT2))\62-( ( ( (1-dataFirstT2['WaitTreatment'])*dataFirstT2['Y'] )/(First_PropensityscoreB[:, 0]) ).sum())*(1/len(dataFirstT2))63dataFirstT.groupby("Y")["queue_sec"].mean()64#Out[132]:65#Y66#0    70.72874867#1    48.35825768# ----- T-learner --------69#dataFirstTB = dataFirstT2[[\70#                     'Invitation_Acep_Hour', \71#                    'Rho_atarrival', 'invite_type', \72#                     'engagement_skill', 'target_skill',\73#                     'WaitTreatment', 'Y']]74dataFirstTB=dataFirstT275dataFirstTB0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]76dataFirstTB0 = dataFirstTB0.drop(["WaitTreatment"], axis=1)77dataFirstTB0x = dataFirstTB0.iloc[:, :-1]78dataFirstTB0Y = dataFirstTB0['Y']79dataFirstTBx = dataFirstTB.iloc[:, :-1]80dataFirstTBx = dataFirstTBx.drop(["WaitTreatment"], axis=1)81dataFirstTB1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]82dataFirstTB1 = dataFirstTB1.drop(["WaitTreatment"], axis=1)83dataFirstTB1x = dataFirstTB1.iloc[:, :-1]84dataFirstTB1Y = dataFirstTB1['Y']85model_0 = LassoCV()86model_1 = LassoCV()87model_0.fit(dataFirstTB0x, dataFirstTB0Y)88model_1.fit(dataFirstTB1x, dataFirstTB1Y)89prediction0 = model_0.predict(dataFirstTBx)90prediction1 = model_1.predict(dataFirstTBx)91ATE_TLearnerii = float((prediction1-prediction0).sum()/len(dataFirstTBx))92# ----- T-learner --------93# ------- S-Learner ---------94dataFirstTBX = dataFirstTB.iloc[:, :-1]95dataFirstTBY = dataFirstTB['Y']96modelS = Ridge()97modelS.fit(dataFirstTBX, dataFirstTBY)98#T=199dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]100dummT1x = dataFirstTB.iloc[:, :-1]101predictionUn = modelS.predict(dummT1x)102dummT1["WaitTreatment"] = 0103dummT1x = dummT1.iloc[:, :-1]104predictionZe = modelS.predict(dummT1x)105ATE_SLearnerii = (predictionUn.sum() / len(dummT1)) - (predictionZe.sum() / len(dummT1))106# ------- S-Learner ---------107# ---------matching---------108#T=0109dummT0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]110dummT0 = dummT0.drop(["WaitTreatment"], axis=1)111dummT0x = dummT0.iloc[:, :-1]112dummT0Y = dummT0['Y']113#T=1114dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]115dummT1 = dummT1.drop(["WaitTreatment"], axis=1)116dummT1x = dummT1.iloc[:, :-1]117dummT1Y = dummT1['Y']118dummT0V = dummT0.values119dummT1V = dummT1.values120dummT1XV=dummT1x.values121dummT0XV=dummT0x.values122ITE = []123for row in dummT1V:124    dif=abs(row[:-1]-dummT0V[:,:-1]).sum(axis=1)125    #index126    #dif.argmin()127    #value128    distance=row[-1]-dummT0V[dif.argmin(),-1]129    ITE.append(distance)130#Sum of the Treated/number of Treated131ATE_Matchingbii = float(sum(ITE))/float(len(dataFirstTB))132# ---------matching---------133#-----------IV's-------------134corralation=dataFirstTB.corr()135res_second = IV2SLS(dataFirstTB.Y,dataFirstTB[['invite_type','engagement_skill','Rho_atarrival','region','city','country','continent','user_os','browser','score','Invitation_Acep_Hour']],\136                    dataFirstTB.WaitTreatment, dataFirstTB.Invitation_Acep_Day_of_week).fit(cov_type='unadjusted')137print(res_second)138covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)139#-0.12140corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\141        'engagement_skill','target_skill']].corr()142#-----------IV's-------------143#FIRST TREATMENT ii -30 sec144dataFirstT = pd.read_csv('DataForFirstTreatmentii.csv', index_col=0)145dataFirstT.WaitTreatment\146    = np.where(dataFirstT['queue_sec']< 30, 1, 0)147len(dataFirstT)#12,343148dFT=dataFirstT[[\149'invite_type','engagement_skill','target_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour','Rho_atarrival','WaitTreatment','Y'\150]]151modelP = LogisticRegression(max_iter=10000)152FirstX = dataFirstT[[\153                     'Invitation_Acep_Hour', \154                    'Rho_atarrival', 'invite_type', \155                     'engagement_skill', 'target_skill',\156                    'Invitation_Acep_Day_of_week',\157                    'score','region','city','country','continent',\158                    'user_os','browser'\159                     ]]160#Wait time161FirstY = dataFirstT.iloc[:, -2]162modelP.fit(FirstX, FirstY)163reg2 = LinearRegression().fit(FirstX, FirstY)164First_Propensityscore = np.asarray(modelP.predict_proba(FirstX))165treatment_plt=plt.hist(First_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')166cont_plt=plt.hist(First_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')167plt.legend();168plt.xlabel('propensity score');169plt.ylabel('number of units');170plt.savefig('prop_score_waiti2.pdf',format='pdf')171#hist, bin_edges = np.histogram(First_Propensityscore[:, 1])172FirstIndex=\173np.where((First_Propensityscore[:, 1] < 0.60)& (First_Propensityscore[:, 1] > 0.45))174First_PropensityscoreB=\175First_Propensityscore[FirstIndex[0]]176treatment_plt1B=plt.hist(First_PropensityscoreB[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')177cont_plt1B=plt.hist(First_PropensityscoreB[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')178plt.legend();179plt.xlabel('propensity score');180plt.ylabel('number of units');181plt.savefig('prop_score_wait2ii.pdf',format='pdf')182dataFirstT2=dFT.iloc[FirstIndex[0]]183len(dataFirstT2) #4,667184len(dataFirstT) #23383185ATE_IPWii=(((dataFirstT2['WaitTreatment']*dataFirstT2['Y'])/(First_PropensityscoreB[:, 1])).sum())*(1/len(dataFirstT2))\186-( ( ( (1-dataFirstT2['WaitTreatment'])*dataFirstT2['Y'] )/(First_PropensityscoreB[:, 0]) ).sum())*(1/len(dataFirstT2))187dataFirstT.groupby("Y")["queue_sec"].mean()188#Out[132]:189#Y190#0    70.728748191#1    48.358257192# ----- T-learner --------193#dataFirstTB = dataFirstT2[[\194#                     'Invitation_Acep_Hour', \195#                    'Rho_atarrival', 'invite_type', \196#                     'engagement_skill', 'target_skill',\197#                     'WaitTreatment', 'Y']]198dataFirstTB=dataFirstT2199dataFirstTB0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]200dataFirstTB0 = dataFirstTB0.drop(["WaitTreatment"], axis=1)201dataFirstTB0x = dataFirstTB0.iloc[:, :-1]202dataFirstTB0Y = dataFirstTB0['Y']203dataFirstTBx = dataFirstTB.iloc[:, :-1]204dataFirstTBx = dataFirstTBx.drop(["WaitTreatment"], axis=1)205dataFirstTB1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]206dataFirstTB1 = dataFirstTB1.drop(["WaitTreatment"], axis=1)207dataFirstTB1x = dataFirstTB1.iloc[:, :-1]208dataFirstTB1Y = dataFirstTB1['Y']209model_0 = LassoCV()210model_1 = LassoCV()211model_0.fit(dataFirstTB0x, dataFirstTB0Y)212model_1.fit(dataFirstTB1x, dataFirstTB1Y)213prediction0 = model_0.predict(dataFirstTBx)214prediction1 = model_1.predict(dataFirstTBx)215ATE_TLearnerii = float((prediction1-prediction0).sum()/len(dataFirstTBx))216# ----- T-learner --------217# ------- S-Learner ---------218dataFirstTBX = dataFirstTB.iloc[:, :-1]219dataFirstTBY = dataFirstTB['Y']220modelS = Ridge()221modelS.fit(dataFirstTBX, dataFirstTBY)222#T=1223dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]224dummT1x = dataFirstTB.iloc[:, :-1]225predictionUn = modelS.predict(dummT1x)226dummT1["WaitTreatment"] = 0227dummT1x = dummT1.iloc[:, :-1]228predictionZe = modelS.predict(dummT1x)229ATE_SLearnerii = (predictionUn.sum() / len(dummT1)) - (predictionZe.sum() / len(dummT1))230# ------- S-Learner ---------231# ---------matching---------232#T=0233dummT0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]234dummT0 = dummT0.drop(["WaitTreatment"], axis=1)235dummT0x = dummT0.iloc[:, :-1]236dummT0Y = dummT0['Y']237#T=1238dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]239dummT1 = dummT1.drop(["WaitTreatment"], axis=1)240dummT1x = dummT1.iloc[:, :-1]241dummT1Y = dummT1['Y']242dummT0V = dummT0.values243dummT1V = dummT1.values244dummT1XV=dummT1x.values245dummT0XV=dummT0x.values246ITE = []247for row in dummT1V:248    dif=abs(row[:-1]-dummT0V[:,:-1]).sum(axis=1)249    #index250    #dif.argmin()251    #value252    distance=row[-1]-dummT0V[dif.argmin(),-1]253    ITE.append(distance)254#Sum of the Treated/number of Treated255ATT_Matchingbii = float(sum(ITE))/float(len(dummT1V))256# ---------matching---------257#-----------IV's-------------258corralation=dataFirstTB.corr()259res_second = IV2SLS(dataFirstTB.Y,dataFirstTB[['engagement_skill','target_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour']],\260                    dataFirstTB.WaitTreatment, dataFirstTB.Rho_atarrival).fit(cov_type='unadjusted')261print(res_second)262covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)263#-0.12264corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\265        'engagement_skill','target_skill']].corr()...

Full Screen

Full Screen

OWTii.py

Source:OWTii.py Github

copy

Full Screen

1import numpy as np2from sklearn.linear_model import LogisticRegression3import statsmodels.formula.api as smf4import matplotlib5matplotlib.use("TkAgg")6from matplotlib import pyplot as plt7from scipy.special import expit8#matplotlib inline9from sklearn.linear_model import LassoCV10from sklearn.linear_model import Ridge11from sklearn.linear_model import LinearRegression12import statsmodels.api as sm13from scipy import stats14from linearmodels.iv import IV2SLS15import os, glob16import pandas as pd17#FIRST TREATMENT ii18dataFirstT = pd.read_csv('DataForFirstTreatmentii.csv', index_col=0)19len(dataFirstT)#12,34320dataFirstT.WaitTreatment\21    = np.where(dataFirstT['queue_sec']< 30, 1, 0)22dataFirstT.WaitTreatment\23    = np.where(dataFirstT['queue_sec']< 60, 1, 0)24dFT=dataFirstT[[\25'invite_type','engagement_skill','target_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour','Rho_atarrival','WaitTreatment','Y'\26]]27modelP = LogisticRegression(max_iter=10000)28FirstX = dataFirstT[[\29                     'Invitation_Acep_Hour', \30                    'Rho_atarrival', 'invite_type', \31                     'engagement_skill', 'target_skill',\32                    'Invitation_Acep_Day_of_week',\33                    'score','region','city','country','continent',\34                    'user_os','browser'\35                     ]]36#Wait time37FirstY = dataFirstT.iloc[:, -2]38modelP.fit(FirstX, FirstY)39reg2 = LinearRegression().fit(FirstX, FirstY)40First_Propensityscore = np.asarray(modelP.predict_proba(FirstX))41treatment_plt=plt.hist(First_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')42cont_plt=plt.hist(First_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')43plt.legend();44plt.xlabel('propensity score');45plt.ylabel('number of units');46plt.savefig('prop_score_wait60ii.pdf',format='pdf')47#hist, bin_edges = np.histogram(First_Propensityscore[:, 1])48FirstIndex=\49np.where((First_Propensityscore[:, 1] < 0.55)& (First_Propensityscore[:, 1] > 0.46))50First_PropensityscoreB=\51First_Propensityscore[FirstIndex[0]]52treatment_plt1B=plt.hist(First_PropensityscoreB[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')53cont_plt1B=plt.hist(First_PropensityscoreB[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')54plt.legend();55plt.xlabel('propensity score');56plt.ylabel('number of units');57plt.savefig('prop_score_wait602ii.pdf',format='pdf')58dataFirstT2=dFT.iloc[FirstIndex[0]]59len(dataFirstT2) #30 sec #1295 #60 sec #4,67560len(dataFirstT) #2338361ATE_IPWii=(((dataFirstT2['WaitTreatment']*dataFirstT2['Y'])/(First_PropensityscoreB[:, 1])).sum())*(1/len(dataFirstT2))\62-( ( ( (1-dataFirstT2['WaitTreatment'])*dataFirstT2['Y'] )/(First_PropensityscoreB[:, 0]) ).sum())*(1/len(dataFirstT2))63dataFirstT.groupby("Y")["queue_sec"].mean()64#Out[132]:65#Y66#0    70.72874867#1    48.35825768# ----- T-learner --------69#dataFirstTB = dataFirstT2[[\70#                     'Invitation_Acep_Hour', \71#                    'Rho_atarrival', 'invite_type', \72#                     'engagement_skill', 'target_skill',\73#                     'WaitTreatment', 'Y']]74dataFirstTB=dataFirstT275dataFirstTB0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]76dataFirstTB0 = dataFirstTB0.drop(["WaitTreatment"], axis=1)77dataFirstTB0x = dataFirstTB0.iloc[:, :-1]78dataFirstTB0Y = dataFirstTB0['Y']79dataFirstTBx = dataFirstTB.iloc[:, :-1]80dataFirstTBx = dataFirstTBx.drop(["WaitTreatment"], axis=1)81dataFirstTB1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]82dataFirstTB1 = dataFirstTB1.drop(["WaitTreatment"], axis=1)83dataFirstTB1x = dataFirstTB1.iloc[:, :-1]84dataFirstTB1Y = dataFirstTB1['Y']85model_0 = LassoCV()86model_1 = LassoCV()87model_0.fit(dataFirstTB0x, dataFirstTB0Y)88model_1.fit(dataFirstTB1x, dataFirstTB1Y)89prediction0 = model_0.predict(dataFirstTBx)90prediction1 = model_1.predict(dataFirstTBx)91ATE_TLearnerii = float((prediction1-prediction0).sum()/len(dataFirstTBx))92# ----- T-learner --------93# ------- S-Learner ---------94dataFirstTBX = dataFirstTB.iloc[:, :-1]95dataFirstTBY = dataFirstTB['Y']96modelS = Ridge()97modelS.fit(dataFirstTBX, dataFirstTBY)98#T=199dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]100dummT1x = dataFirstTB.iloc[:, :-1]101predictionUn = modelS.predict(dummT1x)102dummT1["WaitTreatment"] = 0103dummT1x = dummT1.iloc[:, :-1]104predictionZe = modelS.predict(dummT1x)105ATE_SLearnerii = (predictionUn.sum() / len(dummT1)) - (predictionZe.sum() / len(dummT1))106# ------- S-Learner ---------107# ---------matching---------108#T=0109dummT0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]110dummT0 = dummT0.drop(["WaitTreatment"], axis=1)111dummT0x = dummT0.iloc[:, :-1]112dummT0Y = dummT0['Y']113#T=1114dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]115dummT1 = dummT1.drop(["WaitTreatment"], axis=1)116dummT1x = dummT1.iloc[:, :-1]117dummT1Y = dummT1['Y']118dummT0V = dummT0.values119dummT1V = dummT1.values120dummT1XV=dummT1x.values121dummT0XV=dummT0x.values122ITE = []123for row in dummT1V:124    dif=abs(row[:-1]-dummT0V[:,:-1]).sum(axis=1)125    #index126    #dif.argmin()127    #value128    distance=row[-1]-dummT0V[dif.argmin(),-1]129    ITE.append(distance)130#Sum of the Treated/number of Treated131ATE_Matchingbii = float(sum(ITE))/float(len(dataFirstTB))132# ---------matching---------133#-----------IV's-------------134corralation=dataFirstTB.corr()135res_second = IV2SLS(dataFirstTB.Y,dataFirstTB[['invite_type','engagement_skill','Rho_atarrival','region','city','country','continent','user_os','browser','score','Invitation_Acep_Hour']],\136                    dataFirstTB.WaitTreatment, dataFirstTB.Invitation_Acep_Day_of_week).fit(cov_type='unadjusted')137print(res_second)138covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)139#-0.12140corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\141        'engagement_skill','target_skill']].corr()142#-----------IV's-------------143#FIRST TREATMENT ii -30 sec144dataFirstT = pd.read_csv('DataForFirstTreatmentii.csv', index_col=0)145dataFirstT.WaitTreatment\146    = np.where(dataFirstT['queue_sec']< 30, 1, 0)147len(dataFirstT)#12,343148dFT=dataFirstT[[\149'invite_type','engagement_skill','target_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour','Rho_atarrival','WaitTreatment','Y'\150]]151modelP = LogisticRegression(max_iter=10000)152FirstX = dataFirstT[[\153                     'Invitation_Acep_Hour', \154                    'Rho_atarrival', 'invite_type', \155                     'engagement_skill', 'target_skill',\156                    'Invitation_Acep_Day_of_week',\157                    'score','region','city','country','continent',\158                    'user_os','browser'\159                     ]]160#Wait time161FirstY = dataFirstT.iloc[:, -2]162modelP.fit(FirstX, FirstY)163reg2 = LinearRegression().fit(FirstX, FirstY)164First_Propensityscore = np.asarray(modelP.predict_proba(FirstX))165treatment_plt=plt.hist(First_Propensityscore[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')166cont_plt=plt.hist(First_Propensityscore[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')167plt.legend();168plt.xlabel('propensity score');169plt.ylabel('number of units');170plt.savefig('prop_score_waiti2.pdf',format='pdf')171#hist, bin_edges = np.histogram(First_Propensityscore[:, 1])172FirstIndex=\173np.where((First_Propensityscore[:, 1] < 0.60)& (First_Propensityscore[:, 1] > 0.45))174First_PropensityscoreB=\175First_Propensityscore[FirstIndex[0]]176treatment_plt1B=plt.hist(First_PropensityscoreB[:, 1],fc=(0,0,1,0.5),bins=10,label='Treated')177cont_plt1B=plt.hist(First_PropensityscoreB[:, 0],fc=(1,0,0,0.5),bins=10,label='Control')178plt.legend();179plt.xlabel('propensity score');180plt.ylabel('number of units');181plt.savefig('prop_score_wait2ii.pdf',format='pdf')182dataFirstT2=dFT.iloc[FirstIndex[0]]183len(dataFirstT2) #4,667184len(dataFirstT) #23383185ATE_IPWii=(((dataFirstT2['WaitTreatment']*dataFirstT2['Y'])/(First_PropensityscoreB[:, 1])).sum())*(1/len(dataFirstT2))\186-( ( ( (1-dataFirstT2['WaitTreatment'])*dataFirstT2['Y'] )/(First_PropensityscoreB[:, 0]) ).sum())*(1/len(dataFirstT2))187dataFirstT.groupby("Y")["queue_sec"].mean()188#Out[132]:189#Y190#0    70.728748191#1    48.358257192# ----- T-learner --------193#dataFirstTB = dataFirstT2[[\194#                     'Invitation_Acep_Hour', \195#                    'Rho_atarrival', 'invite_type', \196#                     'engagement_skill', 'target_skill',\197#                     'WaitTreatment', 'Y']]198dataFirstTB=dataFirstT2199dataFirstTB0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]200dataFirstTB0 = dataFirstTB0.drop(["WaitTreatment"], axis=1)201dataFirstTB0x = dataFirstTB0.iloc[:, :-1]202dataFirstTB0Y = dataFirstTB0['Y']203dataFirstTBx = dataFirstTB.iloc[:, :-1]204dataFirstTBx = dataFirstTBx.drop(["WaitTreatment"], axis=1)205dataFirstTB1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]206dataFirstTB1 = dataFirstTB1.drop(["WaitTreatment"], axis=1)207dataFirstTB1x = dataFirstTB1.iloc[:, :-1]208dataFirstTB1Y = dataFirstTB1['Y']209model_0 = LassoCV()210model_1 = LassoCV()211model_0.fit(dataFirstTB0x, dataFirstTB0Y)212model_1.fit(dataFirstTB1x, dataFirstTB1Y)213prediction0 = model_0.predict(dataFirstTBx)214prediction1 = model_1.predict(dataFirstTBx)215ATE_TLearnerii = float((prediction1-prediction0).sum()/len(dataFirstTBx))216# ----- T-learner --------217# ------- S-Learner ---------218dataFirstTBX = dataFirstTB.iloc[:, :-1]219dataFirstTBY = dataFirstTB['Y']220modelS = Ridge()221modelS.fit(dataFirstTBX, dataFirstTBY)222#T=1223dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]224dummT1x = dataFirstTB.iloc[:, :-1]225predictionUn = modelS.predict(dummT1x)226dummT1["WaitTreatment"] = 0227dummT1x = dummT1.iloc[:, :-1]228predictionZe = modelS.predict(dummT1x)229ATE_SLearnerii = (predictionUn.sum() / len(dummT1)) - (predictionZe.sum() / len(dummT1))230# ------- S-Learner ---------231# ---------matching---------232#T=0233dummT0 = dataFirstTB[dataFirstTB["WaitTreatment"] == 0]234dummT0 = dummT0.drop(["WaitTreatment"], axis=1)235dummT0x = dummT0.iloc[:, :-1]236dummT0Y = dummT0['Y']237#T=1238dummT1 = dataFirstTB[dataFirstTB["WaitTreatment"] == 1]239dummT1 = dummT1.drop(["WaitTreatment"], axis=1)240dummT1x = dummT1.iloc[:, :-1]241dummT1Y = dummT1['Y']242dummT0V = dummT0.values243dummT1V = dummT1.values244dummT1XV=dummT1x.values245dummT0XV=dummT0x.values246ITE = []247for row in dummT1V:248    dif=abs(row[:-1]-dummT0V[:,:-1]).sum(axis=1)249    #index250    #dif.argmin()251    #value252    distance=row[-1]-dummT0V[dif.argmin(),-1]253    ITE.append(distance)254#Sum of the Treated/number of Treated255ATT_Matchingbii = float(sum(ITE))/float(len(dummT1V))256# ---------matching---------257#-----------IV's-------------258corralation=dataFirstTB.corr()259res_second = IV2SLS(dataFirstTB.Y,dataFirstTB[['engagement_skill','target_skill','region','city','country','continent','user_os','browser','score','Invitation_Acep_Day_of_week','Invitation_Acep_Hour']],\260                    dataFirstTB.WaitTreatment, dataFirstTB.Rho_atarrival).fit(cov_type='unadjusted')261print(res_second)262covariance(dataFirstT.queue_sec,dataFirstT.Rho_atarrival)263#-0.12264corralation=dataFirstT[['queue_sec','Rho_atarrival','invite_type',\265        'engagement_skill','target_skill']].corr()...

Full Screen

Full Screen

parse_table.py

Source:parse_table.py Github

copy

Full Screen

1from ll1 import log2'''LL(1) Parse Table3# Constructs an LL(1) parse table from a given Grammer.4    The table is map of nonterminal maps. Table = { nonterminal : { first, rule} }5    Each nonterminal is mapped to a rule by one of it's firsts.6    Allows rules access as table[terminal][nonterminal]7    If terminal is not in table[nonterminal] then reject terminal8    9    Remember, if two distinct rules are mapped from table[nonterminal][terminal]10         then the grammer is not LL(1) !!11# Grammer : map with each nonterminal key is mapped to a list of production rules12# Rules : an in order list of terminals and nonterminals.13 14# Terminals : symbols that are not mapped to production rules15# Epsilon  :  a special terminal that allows nonterminal to terminal  16  17# Symbols : the tag used to identify token tags(terminals) and rule tags (nonterminals)18 19# First set : the set of possible first terminals that match with a production rule for a nonterminal.20              If a terminal parsed is a e, and e is also within the first set of S.21              For each rule for a nonterminal, each rule's first symbol22              If the first symbol is a terminal then add it to first set23              If the first symbol is a nonterminal and not equal to first set's nonterminal24                then union the nonterminals first into first set25# Follow set : the set of terminals that follow a nonterminal symbol in any given production rule.26                For a nonterminal in rule r.27                If the nonterminal has nothing following it or follows EPSILON in rule, 28                    then union the follow set of the nonterminal that is mapped to rule r,29                    the parent symbol, if it is not the same.30                If the following symbol in rule is a nonterminal, 31                    then union the follow set with the following nonterminal's first set. 32                    If one of the firsts is epsilon, then union the follow set of parent symbol 33                By default START is followed by EOI34# Example Grammer and Table Constructed35    Nonterminals : S, E36    Terminals    : a, +, EPSILON37    Grammer = 38    {39        E : [[T, A]],40        A : [[+, T, A],41             [EPSILON]42            ]43        T : [[a]]44    }45    46    first_set(E) = [a]              # first set of T47    first_set(A) = [+, EPSILON]     # + and  epsilon are terminal so add 48    first_set(T) = [a]              # a is terminal so add49    follow_set(E) = [EOI]           # is start so default follows EOI   50    follow_set(A) = [EOI]           # A follows nothing in each rule, so union the follow of rules symbol that is not A,51                                      so follow set of E  52    follow_set(T) = [+, EOI]        # T is followed by A, so follow first set of A, however, epsilon is in first so union53                                    # follow set of A54    Table =55    {56        E : { a : [T, A], }57        A : { + : [T, A], EOI : [EPSILON] }58        T : { a : [a] }59    }60        | a   |  +  | EOI61    ----------------------62    E   | T A |     |63    A   |     | T A | EPSILON64    T   |  a  |     |65'''66class ll1_parse_table(dict): 67    # Inherits dict to allow access to rule for table[nonterminal][terminal]68    def __init__(self, grammer, start_sym, epsilon_sym):69        self.grammer = grammer70        #predefined parsing symbols each self.grammer must use71        self.START = start_sym72        self.EPSILON = epsilon_sym73        self.EOI = 'EOI'# default end of input symbol74        self.construct()75    76    #returns string representation of table77    def __repr__(self):78        table = 'Parse Table\n'79        for symbol in self.keys():80            table += symbol + ':\n'81            for first in self[symbol].keys():82                rule = ''83                line = '\t' + '{:<10}'.format(first+ ':')84                for r in self[symbol][first]:85                    rule += r + ' ' 86                table +=  line + '[' + rule + ']\n'87        return table88    # Constructs the LL(1) parse table grammers rules. 89    def construct(self):90        for symbol in self.grammer.keys():91            self[symbol] = {} # allocate map for symbol92            # find first and follow set93            firsts = self.first_set(symbol)94            follows = self.follow_set(symbol)            95            for first in firsts:96                # add rule whose first matches first of rule97                for rule in self.grammer[symbol]: # for each rule in symbols rule list98                    if first in self.first_set(rule[0]): # if the first matches the first of the rule99                        if first not in self[symbol]: # if symbol, first rule has not been added 100                            if first == self.EPSILON: # get follow of parent symbol if first is epsilon101                                # for each follow, assign epsilon102                                for follow in follows:103                                    self[symbol][follow] = [first] # make epsilon symbol a rule (list)104                            else:105                                self[symbol][first] = rule106                        else:107                            log.error('TABLE: Duplicate Rules for ' + symbol + ',' + first)108    # returns list of possible symbols that are the first symbol in the rule109    def first_set(self, symbol):110        firsts = []111        if symbol in self.grammer: ## if symbols rules exits112            rule_set = self.grammer[symbol]113            for rule in rule_set: # check each rule. Rule is list of inorder symbols114                # if rule's first symbol is not the same as root. add the first set 115                #   of that symbol to this symbols first set116                if len(rule) > 0 and (rule[0] != symbol): 117                    firsts  = firsts + self.first_set(rule[0]) # concat first sets118        else: # no rules119            # the symbol is a terminal, so return it as is120            firsts.append(symbol)121        return firsts122    #returns list of symbols that can follow the given symbol123    def follow_set(self, symbol):124        follows  = [] # set of follow symbols125        # End of input follows start by default 126        if symbol == self.START: 127            follows.append(self.EOI) 128        ''' search for symbol in every rule of every other symbol and find next possible129            terminal symbol that can follow current symbol130            iterate through rule set from each symbol'''131        for rule_symbol in self.grammer.keys():  132            # iterate through each rule in rule set for each symbol133            for rule in self.grammer[rule_symbol]:134                i = 0   # index of the symbol in the rule135                # check every symbol in rule136                while i <  len(rule):   137                    if rule[i] == symbol:   # if rule symbol is equal to symbol138                        if i+1 < len(rule): # try to get the next following symbol in the rule139                            if rule[i+1] not in self.grammer:    # if next symbol is terminal 140                                    follows.append(rule[i+1])   # append rule symbol to follow set141                            else:   # else if next symbol is nonterminal, union nonterminal's firsts into follow142                                for first in self.first_set(rule[i+1]):  # for each first in the next symbols rule set 143                                    if first == self.EPSILON:    # if the first is epsilon144                                        # union symbol's follow set with the follow set of the parent rule symbol                                    145                                        follows = follows + [x for x in iter(self.follow_set(rule_symbol)) if x not in follows]146                                    elif first not in follows:  # if not epsilon and doesnt already exist in follow set147                                        follows.append(first)   # append symbol to follow set148                        # if at the end of rule(no next symbol), 149                        elif rule_symbol != symbol:#and parent symbol is not the same as current symbol150                            #union symbol's follow set with the follow set of the parent rule symbol151                            follows = follows + [x for x in iter(self.follow_set(rule_symbol)) if x not in follows]152                    i = i + 1 ...

Full Screen

Full Screen

test_replace_child.py

Source:test_replace_child.py Github

copy

Full Screen

1from typing import Tuple2from hypothesis import given3from tests.utils import (BoundPortedNodesPair,4                         are_bound_ported_nodes_equal,5                         are_bound_ported_nodes_sequences_equal)6from . import strategies7@given(strategies.nested_nodes_with_children_pairs, strategies.nodes_pairs)8def test_basic(first_nodes_with_children_pair: Tuple[BoundPortedNodesPair,9                                                     BoundPortedNodesPair],10               second_nodes_pair: BoundPortedNodesPair) -> None:11    first_nodes, first_children = first_nodes_with_children_pair12    first_bound, first_ported = first_nodes13    first_bound_child, first_ported_child = first_children14    second_bound, second_ported = second_nodes_pair15    first_bound.replace_child(first_bound_child, second_bound)16    first_ported.replace_child(first_ported_child, second_ported)17    assert are_bound_ported_nodes_sequences_equal(first_bound_child.parents,18                                                  first_ported_child.parents)19    assert are_bound_ported_nodes_sequences_equal(second_bound.parents,20                                                  second_ported.parents)...

Full Screen

Full Screen

Using AI Code Generation

copy

Full Screen

1describe('My First Test', function() {2  it('Does not do much!', function() {3    expect(true).to.equal(true)4  })5})6describe('My First Test', () => {7  it('Does not do much!', () => {8    expect(true).to.equal(true)9  })10})11it('Does not do much!', () => {12  expect(true).to.equal(true)13})14it('Does not do much!') => {15  expect(true).to.equal(true)16}17it('Does not do much!') => expect(true).to.equal(true)18it('Does not do much!') => true.should('equal', true)19it('Does not do much!') => true.should('be.true')20it('Does not do much!') => true.should('be', true)21it('Does not do much!') => true.should.be.true22it('Does not do much!') => true.should.be23it('Does not do much!') => true.should24it('Does not do much!') => true25it('Does not do much!')26it('Does not do much!')27it('Does not do much!')28it('Does not do much!')29it('Does not do much!')30it('Does not do much!')31it('Does not do much!')32it('Does not do much!')33it('Does not do much!')34it('Does not do much!')35it('Does not do much

Full Screen

Using AI Code Generation

copy

Full Screen

1describe('My First Test', function() {2  it('Does not do much!', function() {3    expect(true).to.equal(true)4  })5})6describe('My First Test', () => {7  it('Does not do much!', () => {8    expect(true).to.equal(true)9  })10})11it('Does not do much!', () => {12  expect(true).to.equal(true)13})14it('Does not do much!', function() {15  expect(true).to.equal(true)16})17it('Does not do much!', function() {18  expect(true).to.equal(true)19})20it('Does not do much!', function() {21  expect(true).to.equal(true)22})23it('Does not do much!', function() {24  expect(true).to.equal(true)25})26it('Does not do much!', function() {27  expect(true).to.equal(true)28})29it('Does not do much!', function() {30  expect(true).to.equal(true)31})32it('Does not do much!', function() {33  expect(true).to.equal(true)34})35it('Does not do much!', function() {36  expect(true).to.equal(true)37})38it('Does not do much!', function() {39  expect(true).to.equal(true)40})41it('Does not do much!', function() {42  expect(true).to.equal(true)43})44it('Does not do much!', function() {45  expect(true).to.equal(true)46})47it('Does not do much!', function() {48  expect(true).to.equal(true)49})50it('Does not do much!', function() {51  expect(true).to.equal(true)52})53it('Does not do much!', function() {54  expect(true).to.equal(true)55})

Full Screen

Using AI Code Generation

copy

Full Screen

1describe('My First Test', function() {2  it('Does not do much!', function() {3    expect(true).to.equal(true)4  })5})6describe('My Second Test', function() {7  it('Does not do much!', function() {8    expect(true).to.equal(true)9  })10})11describe('My Third Test', function() {12  it('Does not do much!', function() {13    expect(true).to.equal(true)14  })15})16describe('My Fourth Test', function() {17  it('Does not do much!', function() {18    expect(true).to.equal(true)19  })20})21describe('My Fifth Test', function() {22  it('Does not do much!', function() {23    expect(true).to.equal(true)24  })25})26describe('My Sixth Test', function() {27  it('Does not do much!', function() {28    expect(true).to.equal(true)29  })30})31describe('My Seventh Test', function() {32  it('Does not do much!', function() {33    expect(true).to.equal(true)34  })35})36describe('My Eighth Test', function() {37  it('Does not do much!', function() {38    expect(true).to.equal(true)39  })40})41describe('My Ninth Test', function() {42  it('Does not do much!', function() {43    expect(true).to.equal(true)44  })45})46describe('My Tenth Test', function() {47  it('Does not do much!', function() {48    expect(true).to.equal(true)49  })50})51describe('My Eleventh Test', function() {52  it('Does not do much!', function() {53    expect(true).to.equal(true)54  })55})56describe('My Twelfth Test', function() {57  it('Does not do much!', function() {58    expect(true).to.equal(true)59  })60})61describe('My Thirteenth Test', function() {

Full Screen

Using AI Code Generation

copy

Full Screen

1describe('My First Test', function() {2  it('Does not do much!', function() {3    expect(true).to.equal(true)4  })5})6it('Does not do much!', () => {7  expect(true).to.equal(true)8})9it('Does not do much!', () => {10  assert.isOk(true)11})12it('Does not do much!', () => {13  assert.equal(true, true)14})15it('Does not do much!', () => {16  expect(true).to.be.true17})18it('Does not do much!', () => {19  expect(true).to.be.ok20})21it('Does not do much!', () => {22  expect(true).to.be.true23})24it('Does not do much!', () => {25  expect(true).to.be.equal(true)26})27it('Does not do much!', () => {28  expect(true).to.be.equal(true)29})30it('Does not do much!', () => {31  expect(true).to.be.equal(true)32})33it('Does not do much!', () => {34  expect(true).to.be.equal(true)35})36it('Does not do much!', () => {37  expect(true).to.be.equal(true)38})39it('Does not do much!', () => {40  expect(true).to.be.equal(true)41})42it('Does not do much!', () => {43  expect(true).to.be.equal(true)44})45it('Does not do much!', () => {46  expect(true).to.be.equal(true)47})48it('Does not do much!', () => {49  expect(true).to.be.equal(true)50})51it('Does not do much!', () => {52  expect(true).to.be.equal(true)53})

Full Screen

Using AI Code Generation

copy

Full Screen

1describe('My First Test', function() {2  it('Does not do much!', function() {3    expect(true).to.equal(true)4  })5})6it('Does not do much!', () => {7  expect(true).to.equal(true)8})9it('Does not do much!', () => {10  expect(true).to.equal(true)11})12it('Does not do much!', () => {13  expect(true).to.equal(true)14})15it('Does not do much!', () => {16  expect(true).to.equal(true)17})18it('Does not do much!', () => {19  expect(true).to.equal(true)20})21it('Does not do much!', () => {22  expect(true).to.equal(true)23})24it('Does not do much!', () => {25  expect(true).to.equal(true)26})27it('Does not do much!', () => {28  expect(true).to.equal(true)29})30it('Does not do much!', () => {31  expect(true).to.equal(true)32})33it('Does not do much!', () => {34  expect(true).to.equal(true)35})36it('Does not do much!', () => {37  expect(true).to.equal(true)38})39it('Does not do much!', () => {40  expect(true).to.equal(true)41})42it('Does not do much!', () => {43  expect(true).to.equal(true)44})45it('Does not do much!', () => {46  expect(true).to.equal(true)47})48it('Does not do much!', () => {49  expect(true).to.equal(true)50})51it('Does not do much!', () => {52  expect(true).to.equal(true)53})54it('

Full Screen

Using AI Code Generation

copy

Full Screen

1it('first method', function(){2    cy.log('first method')3})4it('second method', function(){5    cy.log('second method')6})7it('third method', function(){8    cy.log('third method')9})10it('fourth method', function(){11    cy.log('fourth method')12})13it('fifth method', function(){14    cy.log('fifth method')15})16it('sixth method', function(){17    cy.log('sixth method')18})19it('seventh method', function(){20    cy.log('seventh method')21})22it('eighth method', function(){23    cy.log('eighth method')24})25it('ninth method', function(){26    cy.log('ninth method')27})28it('tenth method', function(){29    cy.log('tenth method')30})31it('eleventh method', function(){32    cy.log('eleventh method')33})34it('twelfth method', function(){35    cy.log('twelfth method')36})37it('thirteenth method', function(){38    cy.log('thirteenth method')39})40it('fourteenth method', function(){41    cy.log('fourteenth method')42})43it('fifteenth method', function(){44    cy.log('fifteenth method')45})46it('sixteenth method', function(){47    cy.log('sixteenth

Full Screen

Using AI Code Generation

copy

Full Screen

1cy.get('input').type('hello world')2cy.get('input').type('hello world')3cy.get('input').type('hello world')4cy.get('input').type('hello world')5cy.get('input').type('hello world')6cy.get('input').type('hello world')7cy.get('input').type('hello world')8cy.get('input

Full Screen

Using AI Code Generation

copy

Full Screen

1describe('Test suite for first method', function() {2  it('Test case for first method', function() {3  })4})5describe('Test suite for second method', function() {6  it('Test case for second method', function() {7  })8})9describe('Test suite for third method', function() {10  it('Test case for third method', function() {11  })12})13describe('Test suite for fourth method', function() {14  it('Test case for fourth method', function() {15  })16})17describe('Test suite for fifth method', function() {18  it('Test case for fifth method', function() {19  })20})21describe('Test suite for sixth method', function() {22  it('Test case for sixth method', function() {23  })24})25describe('Test suite for seventh method', function() {26  it('Test case for seventh method', function() {27  })28})29describe('Test suite for eighth method', function() {30  it('Test case for eighth method', function() {31  })32})33describe('Test suite for ninth method', function() {34  it('Test case for ninth method', function() {35  })36})37describe('Test suite for tenth method', function() {38  it('Test case for tenth method', function() {39  })40})41describe('Test suite for eleventh method', function() {42  it('Test case for eleventh method', function() {43  })44})

Full Screen

Cypress Tutorial

Cypress is a renowned Javascript-based open-source, easy-to-use end-to-end testing framework primarily used for testing web applications. Cypress is a relatively new player in the automation testing space and has been gaining much traction lately, as evidenced by the number of Forks (2.7K) and Stars (42.1K) for the project. LambdaTest’s Cypress Tutorial covers step-by-step guides that will help you learn from the basics till you run automation tests on LambdaTest.

Chapters:

  1. What is Cypress? -
  2. Why Cypress? - Learn why Cypress might be a good choice for testing your web applications.
  3. Features of Cypress Testing - Learn about features that make Cypress a powerful and flexible tool for testing web applications.
  4. Cypress Drawbacks - Although Cypress has many strengths, it has a few limitations that you should be aware of.
  5. Cypress Architecture - Learn more about Cypress architecture and how it is designed to be run directly in the browser, i.e., it does not have any additional servers.
  6. Browsers Supported by Cypress - Cypress is built on top of the Electron browser, supporting all modern web browsers. Learn browsers that support Cypress.
  7. Selenium vs Cypress: A Detailed Comparison - Compare and explore some key differences in terms of their design and features.
  8. Cypress Learning: Best Practices - Take a deep dive into some of the best practices you should use to avoid anti-patterns in your automation tests.
  9. How To Run Cypress Tests on LambdaTest? - Set up a LambdaTest account, and now you are all set to learn how to run Cypress tests.

Certification

You can elevate your expertise with end-to-end testing using the Cypress automation framework and stay one step ahead in your career by earning a Cypress certification. Check out our Cypress 101 Certification.

YouTube

Watch this 3 hours of complete tutorial to learn the basics of Cypress and various Cypress commands with the Cypress testing at LambdaTest.

Run Cypress automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful