How to use Annotation Type Theory class of org.junit.experimental.theories package

Best junit code snippet using org.junit.experimental.theories.Annotation Type Theory

Source:DataPoints.java Github

copy

Full Screen

1package org.junit.experimental.theories;2import static java.lang.annotation.ElementType.FIELD;3import static java.lang.annotation.ElementType.METHOD;4import java.lang.annotation.Retention;5import java.lang.annotation.RetentionPolicy;6import java.lang.annotation.Target;7/**8 * Annotating an array or iterable-typed field or method with &#064;DataPoints9 * will cause the values in the array or iterable given to be used as potential10 * parameters for theories in that class when run with the11 * {@link org.junit.experimental.theories.Theories Theories} runner.12 * <p>13 * DataPoints will only be considered as potential values for parameters for14 * which their types are assignable. When multiple sets of DataPoints exist with15 * overlapping types more control can be obtained by naming the DataPoints using16 * the value of this annotation, e.g. with17 * <code>&#064;DataPoints({"dataset1", "dataset2"})</code>, and then specifying18 * which named set to consider as potential values for each parameter using the19 * {@link org.junit.experimental.theories.FromDataPoints &#064;FromDataPoints}20 * annotation.21 * <p>22 * Parameters with no specified source (i.e. without &#064;FromDataPoints or23 * other {@link org.junit.experimental.theories.ParametersSuppliedBy24 * &#064;ParameterSuppliedBy} annotations) will use all DataPoints that are25 * assignable to the parameter type as potential values, including named sets of26 * DataPoints.27 * <p>28 * DataPoints methods whose array types aren't assignable from the target29 * parameter type (and so can't possibly return relevant values) will not be30 * called when generating values for that parameter. Iterable-typed datapoints31 * methods must always be called though, as this information is not available32 * here after generic type erasure, so expensive methods returning iterable33 * datapoints are a bad idea.34 * 35 * <pre>36 * &#064;DataPoints37 * public static String[] dataPoints = new String[] { ... };38 * 39 * &#064;DataPoints40 * public static String[] generatedDataPoints() {41 * return new String[] { ... };42 * }43 * 44 * &#064;Theory45 * public void theoryMethod(String param) {46 * ...47 * }48 * </pre>49 * 50 * @see org.junit.experimental.theories.Theories51 * @see org.junit.experimental.theories.Theory52 * @see org.junit.experimental.theories.DataPoint53 * @see org.junit.experimental.theories.FromDataPoints54 */55@Retention(RetentionPolicy.RUNTIME)56@Target({ FIELD, METHOD })57public @interface DataPoints {58 String[] value() default {};59 Class<? extends Throwable>[] ignoredExceptions() default {};60}...

Full Screen

Full Screen

Source:DataPoint.java Github

copy

Full Screen

1package org.junit.experimental.theories;2import static java.lang.annotation.ElementType.FIELD;3import static java.lang.annotation.ElementType.METHOD;4import java.lang.annotation.Retention;5import java.lang.annotation.RetentionPolicy;6import java.lang.annotation.Target;7/**8 * Annotating an field or method with &#064;DataPoint will cause the field value9 * or the value returned by the method to be used as a potential parameter for10 * theories in that class, when run with the11 * {@link org.junit.experimental.theories.Theories Theories} runner.12 * <p>13 * A DataPoint is only considered as a potential value for parameters for14 * which its type is assignable. When multiple {@code DataPoint}s exist 15 * with overlapping types more control can be obtained by naming each DataPoint 16 * using the value of this annotation, e.g. with17 * <code>&#064;DataPoint({"dataset1", "dataset2"})</code>, and then specifying18 * which named set to consider as potential values for each parameter using the19 * {@link org.junit.experimental.theories.FromDataPoints &#064;FromDataPoints}20 * annotation.21 * <p>22 * Parameters with no specified source (i.e. without &#064;FromDataPoints or23 * other {@link org.junit.experimental.theories.ParametersSuppliedBy24 * &#064;ParameterSuppliedBy} annotations) will use all {@code DataPoint}s that are25 * assignable to the parameter type as potential values, including named sets of26 * {@code DataPoint}s.27 * 28 * <pre>29 * &#064;DataPoint30 * public static String dataPoint = "value";31 * 32 * &#064;DataPoint("generated")33 * public static String generatedDataPoint() {34 * return "generated value";35 * }36 * 37 * &#064;Theory38 * public void theoryMethod(String param) {39 * ...40 * }41 * </pre>42 * 43 * @see org.junit.experimental.theories.Theories44 * @see org.junit.experimental.theories.Theory45 * @see org.junit.experimental.theories.DataPoint46 * @see org.junit.experimental.theories.FromDataPoints47 */48@Retention(RetentionPolicy.RUNTIME)49@Target({FIELD, METHOD})50public @interface DataPoint {51 String[] value() default {};52 Class<? extends Throwable>[] ignoredExceptions() default {};53}...

Full Screen

Full Screen

Source:FromDataPoints.java Github

copy

Full Screen

1package org.junit.experimental.theories;2import java.lang.annotation.ElementType;3import java.lang.annotation.Retention;4import java.lang.annotation.RetentionPolicy;5import java.lang.annotation.Target;6import org.junit.experimental.theories.internal.SpecificDataPointsSupplier;7/**8 * Annotating a parameter of a {@link org.junit.experimental.theories.Theory9 * &#064;Theory} method with <code>&#064;FromDataPoints</code> will limit the10 * datapoints considered as potential values for that parameter to just the11 * {@link org.junit.experimental.theories.DataPoints DataPoints} with the given12 * name. DataPoint names can be given as the value parameter of the13 * &#064;DataPoints annotation.14 * <p>15 * DataPoints without names will not be considered as values for any parameters16 * annotated with &#064;FromDataPoints.17 * <pre>18 * &#064;DataPoints19 * public static String[] unnamed = new String[] { ... };20 * 21 * &#064;DataPoints("regexes")22 * public static String[] regexStrings = new String[] { ... };23 * 24 * &#064;DataPoints({"forMatching", "alphanumeric"})25 * public static String[] testStrings = new String[] { ... }; 26 * 27 * &#064;Theory28 * public void stringTheory(String param) {29 * // This will be called with every value in 'regexStrings',30 * // 'testStrings' and 'unnamed'.31 * }32 * 33 * &#064;Theory34 * public void regexTheory(&#064;FromDataPoints("regexes") String regex,35 * &#064;FromDataPoints("forMatching") String value) {36 * // This will be called with only the values in 'regexStrings' as 37 * // regex, only the values in 'testStrings' as value, and none 38 * // of the values in 'unnamed'.39 * }40 * </pre>41 * 42 * @see org.junit.experimental.theories.Theory43 * @see org.junit.experimental.theories.DataPoint44 * @see org.junit.experimental.theories.DataPoints45 */46@Retention(RetentionPolicy.RUNTIME)47@Target(ElementType.PARAMETER)48@ParametersSuppliedBy(SpecificDataPointsSupplier.class)49public @interface FromDataPoints {50 String value();51}...

Full Screen

Full Screen

Source:ParametersSuppliedBy.java Github

copy

Full Screen

1package org.junit.experimental.theories;2import static java.lang.annotation.ElementType.ANNOTATION_TYPE;3import static java.lang.annotation.ElementType.PARAMETER;4import java.lang.annotation.Retention;5import java.lang.annotation.RetentionPolicy;6import java.lang.annotation.Target;7/**8 * Annotating a {@link org.junit.experimental.theories.Theory Theory} method9 * parameter with &#064;ParametersSuppliedBy causes it to be supplied with10 * values from the named11 * {@link org.junit.experimental.theories.ParameterSupplier ParameterSupplier}12 * when run as a theory by the {@link org.junit.experimental.theories.Theories13 * Theories} runner.14 * 15 * In addition, annotations themselves can be annotated with16 * &#064;ParametersSuppliedBy, and then used similarly. ParameterSuppliedBy17 * annotations on parameters are detected by searching up this heirarchy such18 * that these act as syntactic sugar, making:19 * 20 * <pre>21 * &#064;ParametersSuppliedBy(Supplier.class)22 * public &#064;interface SpecialParameter { }23 * 24 * &#064;Theory25 * public void theoryMethod(&#064;SpecialParameter String param) {26 * ...27 * }28 * </pre>29 * 30 * equivalent to:31 * 32 * <pre>33 * &#064;Theory34 * public void theoryMethod(&#064;ParametersSuppliedBy(Supplier.class) String param) {35 * ...36 * }37 * </pre>38 */39@Retention(RetentionPolicy.RUNTIME)40@Target({ ANNOTATION_TYPE, PARAMETER })41public @interface ParametersSuppliedBy {42 Class<? extends ParameterSupplier> value();43}...

Full Screen

Full Screen

Annotation Type Theory

Using AI Code Generation

copy

Full Screen

1public class TestClass {2 public void testMethod(@FromDataPoints("data") int x, @FromDataPoints("data") int y) {3 assertThat(x + y, is(4));4 }5 @DataPoints("data")6 public static int[] data() {7 return new int[]{1, 3};8 }9}10@RunWith(JUnitParamsRunner.class)11public class JUnitParamsTest {12 @Parameters({"1, 3", "2, 2", "3, 1"})13 public void testMethod(int x, int y) {14 assertThat(x + y, is(4));15 }16}17@RunWith(JUnitParamsRunner.class)18public class JUnitParamsTest {19 @Parameters(method = "data")20 public void testMethod(int x, int y) {21 assertThat(x + y, is(4));22 }23 private Object[] data() {24 return new Object[]{25 new Object[]{1, 3},26 new Object[]{2, 2},27 new Object[]{3, 1}28 };29 }30}31@RunWith(JUnitParamsRunner.class)32public class JUnitParamsTest {33 @Parameters(source = DataProvider.class)34 public void testMethod(int x, int y) {35 assertThat(x + y, is(4));36 }37 public static class DataProvider {38 public static Object[] data() {39 return new Object[]{40 new Object[]{1, 3},41 new Object[]{2, 2},42 new Object[]{3, 1}43 };44 }45 }46}47@RunWith(JUnitParamsRunner.class)48public class JUnitParamsTest {49 public void testMethod(int x, int y) {50 assertThat(x + y, is(4));51 }52 private Object parametersForTestMethod() {53 return new Object[]{54 new Object[]{1, 3},55 new Object[]{2, 2},56 new Object[]{3, 1}57 };58 }59}60@RunWith(JUnitParams

Full Screen

Full Screen

Annotation Type Theory

Using AI Code Generation

copy

Full Screen

1import org.junit.experimental.theories.*;2import org.junit.runner.*;3import static org.junit.Assert.*;4import java.util.*;5@RunWith(Theories.class)6public class TheoriesTest {7 @DataPoint public static int INT_1 = 1;8 @DataPoint public static int INT_2 = 2;9 @DataPoint public static int INT_3 = 3;10 @DataPoint public static int INT_4 = 4;11 @DataPoint public static int INT_5 = 5;12 @DataPoint public static int INT_6 = 6;13 @DataPoint public static int INT_7 = 7;14 @DataPoint public static int INT_8 = 8;15 @DataPoint public static int INT_9 = 9;16 @DataPoint public static int INT_10 = 10;17 @DataPoint public static int INT_11 = 11;18 @DataPoint public static int INT_12 = 12;19 @DataPoint public static int INT_13 = 13;20 @DataPoint public static int INT_14 = 14;21 @DataPoint public static int INT_15 = 15;22 @DataPoint public static int INT_16 = 16;23 @DataPoint public static int INT_17 = 17;24 @DataPoint public static int INT_18 = 18;25 @DataPoint public static int INT_19 = 19;26 @DataPoint public static int INT_20 = 20;27 @DataPoint public static int INT_21 = 21;28 @DataPoint public static int INT_22 = 22;29 @DataPoint public static int INT_23 = 23;30 @DataPoint public static int INT_24 = 24;31 @DataPoint public static int INT_25 = 25;32 @DataPoint public static int INT_26 = 26;33 @DataPoint public static int INT_27 = 27;34 @DataPoint public static int INT_28 = 28;35 @DataPoint public static int INT_29 = 29;36 @DataPoint public static int INT_30 = 30;37 @DataPoint public static int INT_31 = 31;38 @DataPoint public static int INT_32 = 32;

Full Screen

Full Screen

Annotation Type Theory

Using AI Code Generation

copy

Full Screen

1@RunWith(Theories.class)2public class TheoryTest {3 public static int INT_PARAM_1 = 1;4 public static int INT_PARAM_2 = 2;5 public static int INT_PARAM_3 = 3;6 public static int[] INT_PARAMS = {1, 2, 3};7 public static String STRING_PARAM_1 = "1";8 public static String STRING_PARAM_2 = "2";9 public static String STRING_PARAM_3 = "3";10 public static String[] STRING_PARAMS = {"1", "2", "3"};11 public void testTheory(int intParam, String stringParam) {12 System.out.println("intParam: " + intParam + ", stringParam: " + stringParam);13 }14}

Full Screen

Full Screen

JUnit Tutorial:

LambdaTest also has a detailed JUnit tutorial explaining its features, importance, advanced use cases, best practices, and more to help you get started with running your automation testing scripts.

JUnit Tutorial Chapters:

Here are the detailed JUnit testing chapters to help you get started:

  • Importance of Unit testing - Learn why Unit testing is essential during the development phase to identify bugs and errors.
  • Top Java Unit testing frameworks - Here are the upcoming JUnit automation testing frameworks that you can use in 2023 to boost your unit testing.
  • What is the JUnit framework
  • Why is JUnit testing important - Learn the importance and numerous benefits of using the JUnit testing framework.
  • Features of JUnit - Learn about the numerous features of JUnit and why developers prefer it.
  • JUnit 5 vs. JUnit 4: Differences - Here is a complete comparison between JUnit 5 and JUnit 4 testing frameworks.
  • Setting up the JUnit environment - Learn how to set up your JUnit testing environment.
  • Getting started with JUnit testing - After successfully setting up your JUnit environment, this chapter will help you get started with JUnit testing in no time.
  • Parallel testing with JUnit - Parallel Testing can be used to reduce test execution time and improve test efficiency. Learn how to perform parallel testing with JUnit.
  • Annotations in JUnit - When writing automation scripts with JUnit, we can use JUnit annotations to specify the type of methods in our test code. This helps us identify those methods when we run JUnit tests using Selenium WebDriver. Learn in detail what annotations are in JUnit.
  • Assertions in JUnit - Assertions are used to validate or test that the result of an action/functionality is the same as expected. Learn in detail what assertions are and how to use them while performing JUnit testing.
  • Parameterization in JUnit - Parameterized Test enables you to run the same automated test scripts with different variables. By collecting data on each method's test parameters, you can minimize time spent on writing tests. Learn how to use parameterization in JUnit.
  • Nested Tests In JUnit 5 - A nested class is a non-static class contained within another class in a hierarchical structure. It can share the state and setup of the outer class. Learn about nested annotations in JUnit 5 with examples.
  • Best practices for JUnit testing - Learn about the best practices, such as always testing key methods and classes, integrating JUnit tests with your build, and more to get the best possible results.
  • Advanced Use Cases for JUnit testing - Take a deep dive into the advanced use cases, such as how to run JUnit tests in Jupiter, how to use JUnit 5 Mockito for Unit testing, and more for JUnit testing.

JUnit Certification:

You can also check out our JUnit certification if you wish to take your career in Selenium automation testing with JUnit to the next level.

Run junit automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Test Your Web Or Mobile Apps On 3000+ Browsers

Signup for free

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful