Best Python code snippet using autotest_python
models.py
Source:models.py  
...13from imblearn.pipeline import make_pipeline as make_pipeline_imb14from .factory import register_model15from ._models import sk_model_factory, nn_model_factory, cv_factory, gcv_factory16from ..helpers.utils import decorate_class17@decorate_class(staticmethod)18@decorate_class(register_model(sk_model_factory))19class SkLearnModels():20    def xgboost():21        return XGBClassifier()22    def randomforest():23        return RandomForestClassifier()24    def ridge():25        return make_pipeline(StandardScaler(), RidgeClassifier())26    def lr():27        return make_pipeline(StandardScaler(), LogisticRegression())28    def dummy():29        return DummyClassifier()30    def catboost():31        return CatBoostClassifier()32    def lightgbm():33        return LGBMClassifier()34    def rf_xgboost():35        return make_pipeline(36            SelectFromModel(RandomForestClassifier(random_state=17)),37            XGBClassifier()38        )39    def rf_lr():40        return make_pipeline(41            SelectFromModel(RandomForestClassifier(random_state=17)),42            LogisticRegression()43        )44    def columnestimator():45        return ColumnEstimator()46    def smote_randomforest():47        return make_pipeline_imb(48            SMOTE(), RandomForestClassifier()49        )50    def smote_xgboost():51        return make_pipeline_imb(52            SMOTE(), XGBClassifier()53        )54    def smote_ridge():55        return make_pipeline_imb(56            SMOTE(), StandardScaler(), RidgeClassifier()57        )58    59    def smote_lr():60        return make_pipeline_imb(61            SMOTE(), StandardScaler(), LogisticRegression()62        )63    def smote_catboost():64        return make_pipeline_imb(65            SMOTE(), CatBoostClassifier()66        )67    68    def smote_lightgbm():69        return make_pipeline_imb(70            SMOTE(), LGBMClassifier(),71        )72from tensorflow.keras.models import Sequential73from tensorflow.keras import layers as L74@decorate_class(staticmethod)75@decorate_class(register_model(nn_model_factory))76class KerasModels:77    def perceptron(input_shape: tuple, n_classes: int=3, units_array: list=[10], 78                    optimizer: str='adam') -> Sequential:79        model = Sequential([80            L.Input(shape=input_shape),81            *(L.Dense(units=units, activation='relu') for units in units_array),82            L.Dense(units=n_classes, activation='softmax')  83        ])84        model.compile(loss='categorical_crossentropy', optimizer=optimizer)85        return model86    def lstm(input_shape, n_classes, units_array, optimizer, ):87        88        model = Sequential([89            L.Input(shape=input_shape),90            *(L.LSTM(i, return_sequences=True, ) 91            for i in units_array['rnn'][:-1]),92            L.LSTM(units_array['rnn'][-1]),93            *(L.Dense(units=units, activation='relu') 94            for units in units_array['dense']),95            L.Dense(n_classes, activation='softmax')96        ], )97        98        model.compile(loss='categorical_crossentropy', optimizer=optimizer)99        return model100    def gru(input_shape, n_classes, units_array, optimizer, ):101        102        model = Sequential([103            L.Input(shape=input_shape),104            *(L.GRU(i, return_sequences=True, ) 105            for i in units_array['rnn'][:-1]),106            L.GRU(units_array['rnn'][-1]),107            *(L.Dense(units=units, activation='relu') 108            for units in units_array['dense']),109            L.Dense(n_classes, activation='softmax')110        ], )111        112        model.compile(loss='categorical_crossentropy', optimizer=optimizer)113        return model114        115    def bi_lstm(input_shape, n_classes, units_array, optimizer, ):116        117        model = Sequential([118            L.Input(shape=input_shape),119            *(L.Bidirectional(L.LSTM(i, return_sequences=True, ))120            for i in units_array['rnn'][:-1]),121            L.Bidirectional(L.LSTM(units_array['rnn'][-1])),122            *(L.Dense(units=units, activation='relu') 123            for units in units_array['dense']),124            L.Dense(n_classes, activation='softmax')125        ], )126        127        model.compile(loss='categorical_crossentropy', optimizer=optimizer)128        return model129    def bi_gru(input_shape, n_classes, units_array, optimizer, ):130        131        model = Sequential([132            L.Input(shape=input_shape),133            *(L.Bidirectional(L.GRU(i, return_sequences=True, ))134            for i in units_array['rnn'][:-1]),135            L.Bidirectional(L.GRU(units_array['rnn'][-1])),136            *(L.Dense(units=units, activation='relu') 137            for units in units_array['dense']),138            L.Dense(n_classes, activation='softmax')139        ], )140        141        model.compile(loss='categorical_crossentropy', optimizer=optimizer)142        return model143from sklearn.model_selection import StratifiedKFold, TimeSeriesSplit144@decorate_class(staticmethod)145@decorate_class(register_model(cv_factory))146class CV:147    def skf(**kwargs):148        return StratifiedKFold(**kwargs)149    150    def tss(**kwargs):151        return TimeSeriesSplit(**kwargs)152from sklearn.model_selection import GridSearchCV, RandomizedSearchCV153@decorate_class(staticmethod)154@decorate_class(register_model(gcv_factory))155class GCV:156    def gcv(**kwargs):157        return GridSearchCV(**kwargs)158    159    def rscv(**kwargs):160        if 'param_grid' in kwargs:161            kwargs['param_distributions'] = kwargs['param_grid']162            kwargs.pop('param_grid')163            ...decorators.py
Source:decorators.py  
...7    """8    Custom decorator for mocking the course_catalog_api_client property of siteconfiguration9    to return a new instance of EdxRestApiClient with a dummy jwt value.10    """11    def decorate_class(klass):12        for attr in dir(klass):13            # Decorate only callable unit tests.14            if not attr.startswith('test_'):15                continue16            attr_value = getattr(klass, attr)17            if not hasattr(attr_value, "__call__"):18                continue19            setattr(klass, attr, decorate_callable(attr_value))20        return klass21    def decorate_callable(test):22        @functools.wraps(test)23        def wrapper(*args, **kw):24            with mock.patch(25                'ecommerce.core.models.SiteConfiguration.course_catalog_api_client',26                mock.PropertyMock(return_value=EdxRestApiClient(27                    settings.COURSE_CATALOG_API_URL,28                    jwt='auth-token'29                ))30            ):31                return test(*args, **kw)32        return wrapper33    if isinstance(test, type):34        return decorate_class(test)35    return decorate_callable(test)36def mock_enterprise_api_client(test):37    """38    Custom decorator for mocking the property "enterprise_api_client" of39    siteconfiguration to construct a new instance of EdxRestApiClient with a40    dummy jwt value.41    """42    def decorate_class(klass):43        for attr in dir(klass):44            # Decorate only callable unit tests.45            if not attr.startswith('test_'):46                continue47            attr_value = getattr(klass, attr)48            if not hasattr(attr_value, '__call__'):49                continue50            setattr(klass, attr, decorate_callable(attr_value))51        return klass52    def decorate_callable(test):53        @functools.wraps(test)54        def wrapper(*args, **kw):55            with mock.patch(56                'ecommerce.core.models.SiteConfiguration.enterprise_api_client',57                mock.PropertyMock(58                    return_value=EdxRestApiClient(59                        settings.ENTERPRISE_API_URL,60                        jwt='auth-token'61                    )62                )63            ):64                return test(*args, **kw)65        return wrapper66    if isinstance(test, type):67        return decorate_class(test)...__init__.py
Source:__init__.py  
...16        return callable(x)17    if mode == "function":18        wrapped_func = decorate_function(orig_func, func_name_str)19    elif mode == "class":20        wrapped_func = decorate_class(orig_func, func_name_str)21    else:22        if is_class(orig_func):23            wrapped_func = decorate_class(orig_func, func_name_str)24        elif is_callable(orig_func):25            wrapped_func = decorate_function(orig_func, func_name_str)26        else:27            wrapped_func = orig_func28    setattr(module_obj, func_name, wrapped_func)29with open(__file__.replace("__init__.py", "torch.txt"), "r") as f1:30    lines = f1.readlines()31    skipped = ["enable_grad", "get_default_dtype", "load", "tensor", "no_grad", "jit"]32    for l in lines:33        l = l.strip()34        if l not in skipped:35            hijack(torch, l, mode="function")36with open(__file__.replace("__init__.py", "torch.nn.txt"), "r") as f2:37    lines = f2.readlines()...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
