Best Python code snippet using avocado_python
dataset.py
Source:dataset.py  
1import numpy as np2import mixture_multivariateBernoulli.config as config3def _get_data_from_file(args):4    with np.load(args['data_file']) as parameters:5        all_outcomes = parameters['all_outcomes']6        prob_of_outcomes = parameters['prob_of_outcomes']7        data = parameters['train_data']8        data_probs = parameters['train_data_probs']9        if config.random_data:10            rnd_prm = np.random.permutation(len(data))11            data = data[rnd_prm]12            # if not(data_probs == None):13            # if (data_probs is not None):14            if len(data_probs.shape) > 0:15                data_probs = data_probs[rnd_prm]16        train_data = data[0:args['train_size']]17        valid_data = data[args['train_size']:(args['train_size'] + args['valid_size'])]18        # if not(data_probs == None):19        # if data_probs is not None:20        if len(data_probs.shape) > 0:21            train_data_probs = data_probs[0:args['train_size']]22            valid_data_probs = data_probs[args['train_size']:(args['train_size'] + args['valid_size'])]23        else:24            train_data_probs = None25            valid_data_probs = None26        if args['test_size'] == 'FULL_TEST':27            test_data = all_outcomes28            test_data_probs = prob_of_outcomes29        else:30            data = parameters['test_data']31            data_probs = parameters['test_data_probs']32            if config.random_data:33                rnd_prm = np.random.permutation(len(data))34                data = data[rnd_prm]35                # if not(data_probs == None):36                # if data_probs is not None:37                if len(data_probs.shape) > 0:38                    data_probs = data_probs[rnd_prm]39            test_data = data[0:args['test_size']]40            # if not(data_probs == None):41            # if data_probs is not None:42            if len(data_probs.shape) > 0:43                test_data_probs = data_probs[0:args['test_size']]44            else:45                test_data_probs = None46    return {'train_data': train_data,47            'train_data_probs': train_data_probs,48            'valid_data': valid_data,49            'valid_data_probs': valid_data_probs,50            'test_data': test_data,51            'test_data_probs': test_data_probs}52def get_data(args):53    if args['data_name'] == 'grid':54        args['data_file'] = 'datasets/grid' + str(args['height']) + 'by' + str(args['width']) + '.npz'55        return _get_data_from_file(args)56    elif args['data_name'] == 'Boltzmann':57        args['data_file'] = 'datasets/Boltzman_' + str(args['n']) + '&' + str(args['m']) + '.npz'58        return _get_data_from_file(args)59    elif args['data_name'].startswith('mnist'):60        if args['digit'] == 'All':61            tr = args['train_size']62            va = args['valid_size']63            te = args['test_size']64            args['train_size'] = args['train_size'] // 1065            args['valid_size'] = args['valid_size'] // 1066            args['test_size'] = args['test_size'] // 1067            args['data_file'] = 'datasets/binary_mnist_' + str(0) + '.npz'68            res = _get_data_from_file(args)69            for d in range(1, 10):70                args['data_file'] = 'datasets/binary_mnist_' + str(d) + '.npz'71                tmp = _get_data_from_file(args)72                res['train_data'] = np.concatenate([res['train_data'], tmp['train_data']], axis=0)73                res['valid_data'] = np.concatenate([res['valid_data'], tmp['valid_data']], axis=0)74                res['test_data'] = np.concatenate([res['test_data'], tmp['test_data']], axis=0)75            np.random.shuffle(res['train_data'])76            np.random.shuffle(res['valid_data'])77            np.random.shuffle(res['test_data'])78            args['train_size'] = tr79            args['valid_size'] = va80            args['test_size'] = te81            return res82        else:83            raise Exception("ERROR: mnist should not be run for just one digit")84            # args['data_file'] = 'datasets/binary_mnist_'+ str(args['digit']) + '.npz'85            # return _get_data_from_file(args)86    elif args['data_name'].startswith('ocr'):87        tr = args['train_size']88        va = args['valid_size']89        te = args['test_size']90        args['train_size'] = tr // 2091        args['valid_size'] = va // 2092        args['test_size'] = te // 2093        args['data_file'] = 'datasets/ocr_' + str(config.ocr_characters[0]) + '.npz'94        res = _get_data_from_file(args)95        for d in range(1, 20):96            args['train_size'] = tr // 2097            args['valid_size'] = va // 2098            args['test_size'] = te // 2099            args['data_file'] = 'datasets/ocr_' + str(config.ocr_characters[d]) + '.npz'100            tmp = _get_data_from_file(args)101            res['train_data'] = np.concatenate([res['train_data'], tmp['train_data']], axis=0)102            res['valid_data'] = np.concatenate([res['valid_data'], tmp['valid_data']], axis=0)103            res['test_data'] = np.concatenate([res['test_data'], tmp['test_data']], axis=0)104        np.random.shuffle(res['train_data'])105        np.random.shuffle(res['valid_data'])106        np.random.shuffle(res['test_data'])107        #################### in baayad avaz beshe!!!108        args['train_size'] = tr109        args['valid_size'] = va110        args['test_size'] = te111        return res112    elif args['data_name'] == 'k_sparse':113        args['data_file'] = 'datasets/k_sparse_' + str(args['n']) + '_' + str(args['sparsity_degree']) + '.npz'114        return _get_data_from_file(args)115    elif args['data_name'] == 'rcv1':116        args['data_file'] = 'datasets/rcv1.npz'117        return _get_data_from_file(args)118    elif args['data_name'] == 'BayesNet':119        args['data_file'] = 'datasets/BayesNet_' + str(args['n']) + '_' + str(args['par_num']) + '.npz'120        return _get_data_from_file(args)121    else:...data_getter.py
Source:data_getter.py  
...5    TOWN_DATA = CURRENT_DIR + "/../../preprocessing_data/towns.txt"6    CSV_TRAIN_DATA = CURRENT_DIR + "/../../data/Test_rev1.csv"7    UNIQUE_JOB_DATA = CURRENT_DIR + "/../../preprocessing_data/job_roles_unique.txt"8    @staticmethod9    def _get_data_from_file(filename, lowercase=True):10        with open(filename, 'r') as f:11            read_data = []12            for row in f.readlines():13                row_data = row.lower() if lowercase else row14                read_data.append(row_data.replace("\n", ""))15            return read_data16    @classmethod17    def get_towns(cls, lowercase=True):18        """19        get list of towns above 1000020        :return:list of towns21        """22        return DataGetter._get_data_from_file(cls.TOWN_DATA, lowercase)23    @classmethod24    def get_stop_word_inc_cities(cls, lowercase=True):25        """26        get list of towns above 10000 pop + stop words27        :return:list of towns28        """29        return DataGetter._get_data_from_file(cls.STOP_WORDS_WITH_CITIES, lowercase)30    @classmethod31    def get_unique_job_roles(cls, lowercase=True):32        """33        Get list of unique jobs as specifed by british achieve34        """...cpc6128.py
Source:cpc6128.py  
...4from memory import Memory, RomChunk, UpperRomChunk5from instruction import Cpu6import cpcio7import screen8def _get_data_from_file(fname):9    with open(fname, 'rb') as fin:10        data = fin.read()11    return data12def _build_memory(screen):13    """ Initialize CPC464 memory map """14    memory = Memory(screen)15    memory.add_chunk(0x0000, RomChunk(_get_data_from_file('6128L.rom')))16    memory.add_chunk(0xC000, UpperRomChunk(0, _get_data_from_file('6128U-basic.rom')))17    memory.apply_ram_map(0)18    memory.dump_map()19    return memory20def _build_cpu(memory_map):21    return Cpu(memory_map)22class Cpc6128(object):23    def __init__(self):24        self.screen = scr = screen.Screen()25        self.memory = _build_memory(self.screen)26        self.cpu = _build_cpu(self.memory)27        self.gatearray = cpcio.GateArray(self.cpu, self.memory, scr)28        self.ppi8255 = cpcio.PPI8255(self.cpu)29        self.printer = cpcio.PrinterPort(self.cpu)30        self.crtc = cpcio.Crtc(self.cpu, scr)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
