Best Python code snippet using avocado_python
statistics.py
Source:statistics.py  
1from src.constants import PREPROCCESSED_DATA_DIR, STATISTICS_BASE_DIR2from src.data.statistics import statistics3from src.data.class_infos import Instance as classes_info4import csv5import os6def compute_statistics(preprocessed_base_dir, flags="abcdefghi", output_dir=STATISTICS_BASE_DIR):7    first_line = "=" * 10 + " Sentiment Emojizer Data Information " + "=" * 10 + "\n"8    log_str = "=" * 10 + " Sentiment Emojizer Data Information " + "=" * 10 + "\n"9    10    if ('a' in flags):11        data_count = statistics.count_data(preprocessed_base_dir)12        partial_str = "Label's rows count:\n"13        csv_columns = ['label', 'data_count']14        csv_data =[]15        for key in data_count:16            class_name = classes_info.get_class_name(key)17            partial_str += f"{class_name}: {data_count[key]}\n"18            data = {"label": class_name, 'data_count':data_count[key]}19            csv_data.append(data)20        if(output_dir is not None):21            save_csv(csv_columns, csv_data, output_dir, "DataCount")22        log_str += partial_str23        log_str += "=" * (len(first_line) - 1) + "\n"24    if 'b' in flags:25        tokens_count = statistics.count_tokens(preprocessed_base_dir)26        partial_str = "Label's tokens count:\n"27        csv_columns = ['label', 'token_count']28        csv_data =[]29        for key in tokens_count:30            class_name = classes_info.get_class_name(key)31            partial_str += f"{class_name}: {tokens_count[key]}\n"32            data = {"label": class_name, 'token_count': tokens_count[key]}33            csv_data.append(data)34        if(output_dir is not None):35            save_csv(csv_columns, csv_data, output_dir, "TokenCount")36        log_str += partial_str37        log_str += "=" * (len(first_line) - 1) + "\n" 38    if 'c' in flags:39        tokens_count = statistics.unique_tokens(preprocessed_base_dir)40        partial_str = "Label's unique tokens count:\n"41        csv_columns = ['label', 'token_count']42        csv_data =[]43        for key in tokens_count:44            class_name = classes_info.get_class_name(key)45            partial_str += f"{class_name}: {len(tokens_count[key])}\n"46            data = {"label": class_name, 'token_count':tokens_count[key]}47            csv_data.append(data)48        if(output_dir is not None):49            save_csv(csv_columns, csv_data, output_dir, "UniqueTokenCount")50        log_str += partial_str51        log_str += "=" * (len(first_line) - 1) + "\n"52    if 'd' in flags:53        common_tokens = statistics.common_tokens(preprocessed_base_dir)54        partial_str = "Label's common tokens count:\n"55        csv_columns = ['label', 'common_tokens']56        csv_data =[]57        for key in common_tokens:58            id1, id2 =key59            class_name1 = classes_info.get_class_name(id1)60            class_name2 = classes_info.get_class_name(id2)61            partial_str += f"{class_name1}-{class_name2}: {len(common_tokens[key])}\n"62            data = {"label" : f"{class_name1}-{class_name2}", "common_tokens": len(common_tokens[key])}63            csv_data.append(data)64        if(output_dir is not None):65            save_csv(csv_columns, csv_data, output_dir, "CommonTokensCount")66        log_str += partial_str67        log_str += "=" * (len(first_line) - 1) + "\n"68    if 'e' in flags:69        uncommon_tokens = statistics.uncommon_tokens(preprocessed_base_dir)70        partial_str = "Label's uncommon tokens count:\n"71        csv_columns = ['label', 'uncommon_tokens']72        csv_data =[]73        for key in uncommon_tokens:74            id1, id2 =key75            class_name1 = classes_info.get_class_name(id1)76            class_name2 = classes_info.get_class_name(id2)77            partial_str += f"{class_name1}-{class_name2}: {len(uncommon_tokens[key])}\n"78            data = {"label" : f"{class_name1}-{class_name2}", "uncommon_tokens": len(uncommon_tokens[key])}79            csv_data.append(data)80        if(output_dir is not None):81            save_csv(csv_columns, csv_data, output_dir, "UncommonTokensCount")82        log_str += partial_str83        log_str += "=" * (len(first_line) - 1) + "\n"84    if 'f' in flags:85        uncommon_tokens = statistics.most_repeated_uncommon_tokens(preprocessed_base_dir)86        partial_str = "Label's most repeated uncommon tokens: (word, repeated_count)\n"87        for key in uncommon_tokens:88            class_name = classes_info.get_class_name(key)89            partial_str += f"{class_name}: {uncommon_tokens[key][:10]}\n"90        log_str += partial_str91        log_str += "=" * (len(first_line) - 1) + "\n"92    if 'g' in flags:93        common_tokens = statistics.common_tokens_relfreq(preprocessed_base_dir)94        partial_str = "Label's common tokens sorted by RelativeNormalizeFreq: (word, relfreq)\n"95        csv_columns = ['token', 'relfreq']96        for key in common_tokens:97            id1, id2 =key98            class_name1 = classes_info.get_class_name(id1)99            class_name2 = classes_info.get_class_name(id2)100            partial_str += f"{class_name1}-{class_name2}: {common_tokens[key][:10]}\n"101            csv_data = []102            for word, relfreq in common_tokens[key][:10]:103                csv_data.append({"token": word, "relfreq": relfreq}) 104            if (output_dir is not None):105                save_csv(csv_columns, csv_data, output_dir, f"{class_name1}-{class_name2}_RelFreq")106        log_str += partial_str107        log_str += "=" * (len(first_line) - 1) + "\n"108    if 'h' in flags:109        tokens = statistics.sorted_words_tfidf(preprocessed_base_dir)110        partial_str = "Label's tokens sorted by TF-IDF: (word, tfidf)\n"111        csv_columns = ['token', 'tfidf']112        for key in tokens:113            class_name = classes_info.get_class_name(key)114            partial_str += f"{class_name}: {tokens[key][:10]}\n"115            csv_data =[]116            for word, tfidf in tokens[key][:10]:117                csv_data.append({"token": word, "tfidf": tfidf}) 118            if output_dir is not None:119                save_csv(csv_columns, csv_data, output_dir, f"{class_name}_TFIDF")120        log_str += partial_str121        log_str += "=" * (len(first_line) - 1) + "\n"122    if 'i' in flags:123        #TODO plot histogram and save it124        pass125    return log_str126# compute_statistics(PREPROCCESSED_DATA_DIR)127def save_csv(csv_columns, csv_data, base_dir, name):128    if not os.path.exists(base_dir):129        os.makedirs(base_dir, exist_ok=True)130    131    path = os.path.join(base_dir, f"{name}.csv")132    with open(path, 'w') as csvfile:133        writer = csv.DictWriter(csvfile, fieldnames=csv_columns)134        writer.writeheader()135        for data in csv_data:136            writer.writerow(data)137    138import argparse139import json140parser = argparse.ArgumentParser()141parser.add_argument("--flags", type=str ,default="abcdefghijkl")142parser.add_argument("--input", type=str, default=PREPROCCESSED_DATA_DIR)143parser.add_argument("--out", type=str, default=None)144args = parser.parse_args()145if __name__ == "__main__":146    preprocessed_base_dir = args.input147    flags = args.flags148    output_dir = args.out149    # print(output_dir)...00017_letter_combination_of_a_phone_number.py
Source:00017_letter_combination_of_a_phone_number.py  
1from typing import *2class Solution:3    def letterCombinations(self, digits: str) -> List[str]:4        d = {5            "2": "abc",6            "3": "def",7            "4": "ghi",8            "5": "jkl",9            "6": "mno",10            "7": "pqrs",11            "8": "tuv",12            "9": "wxyz",13        }14        n = len(digits)15        result = []16        def rec(i, partial_str):17            nonlocal digits18            nonlocal n19            nonlocal result20            if i >= n:21                if len(partial_str) > 0:22                    result.append(partial_str)23                return24            digit = digits[i]25            candidates = d[digit]26            for char in candidates:27                rec(i + 1, partial_str + char)28        rec(0, "")29        return result30s = Solution()...BOJ. 16916.py
Source:BOJ. 16916.py  
1full_str = input()2partial_str = input()3# print(1 if partial_str in full_str else 0)4start_idx = 05end_idx = start_idx + len(partial_str) - 1 # idxëê¹ -1ì í´ì¤ì¼ í¨6str_to_check = full_str[start_idx: end_idx + 1]7for _ in range(len(full_str)-len(partial_str)+1): #8    if str_to_check == partial_str:9        print(1)10        break11    end_idx += 112    if end_idx == len(full_str):13        continue14    else:15        str_to_check = str_to_check[1:] + full_str[end_idx]16else:...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
