Best Python code snippet using avocado_python
ResNet152.py
Source:ResNet152.py  
1import tensorflow as tf2from keras.applications.densenet import DenseNet1213from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D,GlobalAveragePooling2D4from keras.models import Sequential,Model,load_model5from tensorflow.python.client import device_lib6import numpy as np7from keras.models import Model8from keras.layers import Dense9from keras.applications import ResNet15210from sklearn.metrics import classification_report11import itertools12from keras_preprocessing.image import ImageDataGenerator13from sklearn.metrics import roc_curve, auc, roc_auc_score14import matplotlib.pyplot as plt15from keras import models16from keras import layers17from keras import optimizers18from keras.models import Model,load_model,Sequential19from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D,GlobalAveragePooling2D,BatchNormalization,Activation20##### Pre Processing21from keras_preprocessing.image import ImageDataGenerator22train_gendata = []23valid_gendata = []24test_gendata = []25train_datagen2 = ImageDataGenerator(26    rescale=1. / 255,27    zoom_range=0.2,28    validation_split = 0.2)29model_path = "E://CN240//model//model5-{epoch:02d}-{val_accuracy:.4f}.h5"30train_gen = train_datagen2.flow_from_directory(31directory='C://Users//Admin//Desktop//Newtrain',32target_size=(224, 224),33shuffle = True,34color_mode="rgb",35batch_size=4,36class_mode="categorical",37subset = 'training')38train_gendata.append(train_gen)39    40valid_gen = train_datagen2.flow_from_directory(41directory='C://Users//Admin//Desktop//Newtrain',42target_size=(224, 224),43color_mode="rgb",44batch_size=4,45class_mode="categorical",46subset='validation')47valid_gendata.append(valid_gen)48    49test_gen = train_datagen2.flow_from_directory(50directory='C://Users//Admin//Desktop//testdata',51target_size=(224, 224),52color_mode="rgb",53batch_size=1,54class_mode=None)55test_gendata.append(test_gen)56##### Create ResNet152 Model57model = ResNet152(weights='imagenet',58                    include_top=False,59                    input_shape=(224, 224, 3))60x = model.output61x = GlobalAveragePooling2D()(x)62x = Dense(1024, activation='relu')(x)63x = Dropout(0.55)(x)64x = Dense(512, activation='relu')(x)65x = Dropout(0.55)(x)66predictions = Dense(3, activation= 'softmax')(x)67model_2 = Model(inputs = model.input, outputs = predictions)68model_2.compile(optimizer= 'adam', loss='categorical_crossentropy', metrics=['accuracy'])69##### Train Model70batch_size = 1671    72generator = train_gendata[0]73    74valid = valid_gendata[0]75test = test_gendata[0]76filepath="E://CN240//model_from_fold//model5-{epoch:02d}-{val_accuracy:.4f}.h5"77checkpoint = ModelCheckpoint(filepath, monitor= 'val_accuracy', verbose=1, save_best_only=False, mode='max')78callbacks_list = [checkpoint]79history = model_2.fit(80                generator,81                steps_per_epoch=generator.n/batch_size,82                epochs=30,83                validation_data=valid,84                validation_steps=valid.n/batch_size,85                shuffle=True,86                verbose=1,87                callbacks = callbacks_list)88    89model_2.evaluate_generator(generator=valid,steps=valid.n)90test_gendata[0].reset()91    92import json93from keras.models import model_from_json, load_model94with open('E://CN240//model//model5_architecture.json', 'w') as f:95    f.write(model_2.to_json())96print("Saved model to disk")97##### Ploting Model-Loss Graph98# list all data in history99print(history.history.keys())100# summarize history for accuracy101plt.plot(history.history['accuracy'])102plt.plot(history.history['val_accuracy'])103plt.title('Model Accuracy')104plt.ylabel('Accuracy')105plt.xlabel('Epoch')106plt.legend(['Train', 'Test'], loc='upper left')107plt.show()108# summarize history for loss109plt.plot(history.history['loss'])110plt.plot(history.history['val_loss'])111plt.title('Model Loss')112plt.ylabel('Loss')113plt.xlabel('Epoch')114plt.legend(['Train', 'Test'], loc='upper left')115plt.show()116##### Printing Report117x_labels = test.classes118y_labels = predicted_class_indices119print(classification_report(y_labels, x_labels))120##### Ploting Confusion Matrix121def plot_confusion_matrix(cm, classes, 122                          normalize=False,123                         title = 'Confusion Matrix',124                         cmap=plt.cm.Blues):125  126  plt.imshow(cm, interpolation = 'nearest', cmap=cmap)127  plt.title(title)128  plt.colorbar()129  tick_marks = np.arange(len(classes))130  plt.xticks(tick_marks, classes, rotation = 45)131  plt.yticks(tick_marks, classes)132  133  if normalize:134    cm = cm.astype('float') / cm.sum(axis=1) [:, np.newaxis]135    print("Normalized Confusion Matrix")136  else:137    print("Confusion Matrix without normalization")138  139  print(cm)140  141  thresh = cm.max() / 2.142  143  for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):144    plt.text(j,i, cm[i,j],145            horizontalalignment ="center",146            color = "white" if cm[i,j] > thresh else "black")147    plt.tight_layout()148    plt.ylabel('True label')149    plt.xlabel('Predicted label')150cm = confusion_matrix(x_labels, y_labels)151cm_plot_labels = ['Glaucoma','Normal','Others']...test.py
Source:test.py  
1import hashlib2import certifi3import urllib4import os5from pymongo import MongoClient6from pymongo.errors import ConnectionFailure7from PIL import Image8import unittest9from main import decode10from main import validate_password11from main import genData12class Testing(unittest.TestCase):13    def test_validate_password(self):14        self.assertEqual(validate_password(''), 0)15        self.assertEqual(validate_password('Abc123'), 0)16        self.assertEqual(validate_password('Abc123Abc123Abc123Abc123'), 0)17        self.assertEqual(validate_password('AAAAAAAA'), 1)18        self.assertEqual(validate_password('AAAAbbbbc'), 1)19        self.assertEqual(validate_password('123456789'), 2)20        self.assertEqual(validate_password('AAAA12345'), 2)21        self.assertEqual(validate_password('aaaa12345'), 3)22        self.assertEqual(validate_password('5we13aaaa12345'), 3)23        self.assertEqual(validate_password('AAAaaaa12345'), -1)24        self.assertEqual(validate_password('kjs36adfjIS230Rcv5D'), -1)25    26    def test_decode(self):27        script_dir = os.path.dirname(__file__)28        rel_path = '../../test.png'29        abs_img_path = os.path.join(script_dir, rel_path)30        image_to_decode = Image.open(abs_img_path)31        self.assertEqual(decode(image_to_decode, ''), False)32        self.assertEqual(decode(image_to_decode, 'osdfjlj32'), False)33        self.assertEqual(decode(image_to_decode, 'Abcd1234'), False)34        35        password = hashlib.sha256('Abcd1234'.encode()).hexdigest()36        self.assertEqual(decode(image_to_decode, password), 'xyz')37    38    def test_genData(self):39        self.assertEqual(genData("1234"), ['00110001', '00110010', '00110011', '00110100'])40        self.assertEqual(genData("abcd"), ['01100001', '01100010', '01100011', '01100100'])41        self.assertEqual(genData("QWER"), ['01010001', '01010111', '01000101', '01010010'])42        self.assertEqual(genData("!@#$"), ['00100001', '01000000', '00100011', '00100100'])43        self.assertEqual(genData("[];',./"), ['01011011', '01011101', '00111011', '00100111', '00101100', '00101110', '00101111'])44    def test_isConnected(self):45        conn = MongoClient(46            "mongodb+srv://LijuanZhuge:" + urllib.parse.quote(47                "US-65&sR@P5A#@F") + "@cluster0.botulzy.mongodb.net/?retryWrites=true&w=majority", tlsCAFile=certifi.where())48        try:49            conn.finalproject.command('ismaster')50        except ConnectionFailure:51            print("Server not available")52if __name__ == '__main__':...test_gendata.py
Source:test_gendata.py  
2from pydantic import parse_file_as3from validate_cloud_optimized_geotiff import validate4from loopy.run_image import run_image5from loopy.sample import Sample6def test_gendata():7    out = Path("testout")8    run_image(9        Path("sample.tif"),10        out,11        scale=0.497e-6,12        channels=",".join(["Lipofuscin", "DAPI", "GFAP", "NeuN", "OLIG2", "TMEM119"]),13    )14    out = out / "sample"15    assert (out / "sample_1.tif").exists()16    assert (out / "sample_2.tif").exists()17    assert not validate((out / "sample_1.tif").as_posix(), full_check=True)[0]  # No errors18    assert not validate((out / "sample_2.tif").as_posix(), full_check=True)[0]...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
