Best Python code snippet using fMBT_python
json_pandas.py
Source:json_pandas.py  
1"""2json ë¶ë¬ìì 캡ì
 ë¶ì´ë ê²3"""4import json5import pandas as pd6path = './datasets/vqa/v2_OpenEnded_mscoco_train2014_questions.json'7with open(path) as question:8    question = json.load(question)9# question['questions'][0]10# question['questions'][1]11# question['questions'][2]12df = pd.DataFrame(question['questions'])13df14caption_path = './datasets/caption/vis_st_trainval.json'15with open(caption_path) as cap:16    cap = json.load(cap)17df_cap = pd.DataFrame(cap)18df_cap19df_addcap = pd.merge(df, df_cap, how='left', on='image_id')20del df_addcap['file_path']21########################################################################################################################22"""23pandas to json24"""25df_addcap.to_json('./datasets/caption/train_cap2.json', orient='table')26with open('./datasets/caption/train_cap2.json') as train_cap:27    train_cap = json.load(train_cap)28########################################################################################################################29########################################################################################################################30"""31answer + cap32"""33path = '/home/nextgen/Desktop/mcan-vqa/datasets/vqa/v2_mscoco_train2014_annotations.json'34path = './datasets/vqa/v2_mscoco_val2014_annotations.json'35with open(path) as answer:36    answer = json.load(answer)37answer['annotations'][0]38df_ans = pd.DataFrame(answer['annotations'])39df_ans[:0]40del df_ans['question_type']41del df_ans['answers']42del df_ans['answer_type']43del df_ans['image_id']44df_ans[df_ans['question_id']==458752000]45df_addcap2 = pd.merge(df_addcap, df_ans, how='left', on='question_id')46df_addcap2[:0]47df_addcap2['multiple_choice_answer']48# del df_addcap['file_path']49df_addcap2.to_json('./datasets/caption/val_qacap.json', orient='table')50with open('./datasets/caption/train_qacap.json') as train_qacap:51    train_qacap = json.load(train_qacap)52########################################################################################################################53"""val testë ë§ì°¬ê°ì§"""54path = './datasets/vqa/v2_OpenEnded_mscoco_val2014_questions.json'55with open(path) as question:56    question = json.load(question)57df = pd.DataFrame(question['questions'])58df59caption_path = './datasets/caption/vis_st_trainval.json'60with open(caption_path) as cap:61    cap = json.load(cap)62df_cap = pd.DataFrame(cap)63df_cap64df_addcap = pd.merge(df, df_cap, how='left', on='image_id')65df_addcap[:0]66del df_addcap['file_path']67df_addcap.to_json('./datasets/caption/val_cap.json', orient='table')68#test69path = './datasets/vqa/v2_OpenEnded_mscoco_test-dev2015_questions.json'70with open(path) as question:71    question = json.load(question)72df = pd.DataFrame(question['questions'])73df74df['image_id'] = df.image_id.astype(int)75caption_path = './datasets/caption/vis_st_test.json'76with open(caption_path) as cap:77    cap = json.load(cap)78df_cap = pd.DataFrame(cap)79df_cap80df_cap['image_id'] = df_cap.image_id.astype(int)81df_addcap = pd.merge(df, df_cap, how='left', on='image_id')82df_addcap[:0]83del df_addcap['file_path']84df_addcap.to_json('./datasets/caption/test_cap.json', orient='table')85########################################################################################################################86from core.data.ans_punct import prep_ans87import numpy as np88import en_vectors_web_lg, random, re, json89import json90from core.data.data_utils import ques_load91stat_ques_list = \92            json.load(open('./datasets/caption/train_cap.json', 'r'))['data'] + \93            json.load(open('./datasets/caption/val_cap.json', 'r'))['data'] + \94            json.load(open('./datasets/caption/test_cap.json', 'r'))['data']95def tokenize(stat_ques_list, use_glove):96    token_to_ix = {97        'PAD': 0,98        'UNK': 1,99    }100    spacy_tool = None101    pretrained_emb = []102    if use_glove:103        spacy_tool = en_vectors_web_lg.load()104        pretrained_emb.append(spacy_tool('PAD').vector)105        pretrained_emb.append(spacy_tool('UNK').vector)106    for ques in stat_ques_list:107        words = re.sub(108            r"([.,'!?\"()*#:;])",109            '',110            ques['question'].lower()111        ).replace('-', ' ').replace('/', ' ').split()112        for word in words:113            if word not in token_to_ix:114                token_to_ix[word] = len(token_to_ix)115                if use_glove:116                    pretrained_emb.append(spacy_tool(word).vector)117    for ques in stat_ques_list:118        words = re.sub(119            r"([.,'!?\"()*#:;])",120            '',121            ques['caption'].lower()122        ).replace('-', ' ').replace('/', ' ').split()123        for word in words:124            if word not in token_to_ix:125                token_to_ix[word] = len(token_to_ix)126                if use_glove:127                    pretrained_emb.append(spacy_tool(word).vector)128    pretrained_emb = np.array(pretrained_emb)129    return token_to_ix, pretrained_emb130token_to_ix, pretrained_emb = tokenize(stat_ques_list, True)131#######################################################################################################################132# with open('./datasets/vqa/v2_mscoco_train2014_annotations.json') as answer:133#     answer = json.load(answer)134#135# answer['annotations'][2]136"""137ëµì ì´ì©íëê±°ë¡ íë©´ train val ë¹êµë¡í´ì¼ í¨138testì
ì ëµì ì ê³µíì§ ììì testí  ë ëµì ì´ì©íë 모ë¸ì ì¬ì©í  ì ìì139"""140####141import cal_sim142import pandas as pd143with open('datasets/caption/train_cap.json') as train_cap:144    train_cap = json.load(train_cap)145with open('datasets/caption/val_cap.json') as val_cap:146    val_cap = json.load(val_cap)147with open('datasets/caption/test_cap.json') as test_cap:148    test_cap = json.load(test_cap)149df_train = pd.DataFrame(train_cap['data'])150df_val = pd.DataFrame(val_cap['data'])151df_test = pd.DataFrame(test_cap['data'])152df_train[:0]153# df_train['similarity'] = cal_sim.sent_sim((df_train['question'], dtype=int32), (df_train['caption'], dtype=int32))154df_train.iloc[0]['question']155def txt2vec(sentence):156    # s = sentence.split()157    tt = []158    new_i = re.sub(159        r"([.,'!?\"()*#:;])",160        '',161        sentence.lower()162    ).replace('-', ' ').replace('/', ' ').split()163    for i in new_i:164        num = token_to_ix[i]165        tt.append(pretrained_emb[num])166    return tt167stat_ques_list[0]168token_to_ix['what']169len(txt2vec(df_train.iloc[0]['question']))170df_train.iloc[0]['question']171df_train.iloc[0]['caption']172len(txt2vec(df_train.iloc[0]['caption']))173from numpy import dot174from numpy.linalg import norm175import numpy as np176def cos_sim(A, B):177    return dot(A, np.transpose(B)) / (norm(A) * norm(B))178def word_sim(w1,w2): #word simiarity179    s = 0.5 * (1+ cos_sim(w1,w2))180    return s181def sent_sim(ss1, ss2): #sentence simiarity182    s1 = txt2vec(ss1)183    s2 = txt2vec(ss2)184    t = []185    for i in s1[2:]: #question   0,1 are PAD, UNK186        tmp = []187        for j in s2[2:]: #caption188            tmp_sim = word_sim(i,j)189            tmp.append(tmp_sim)190        t.append(max(tmp))191        sentence_sim = sum(t) / len(s1[2:])192    return sentence_sim193t = sent_sim('yes', 'hello')194tmp = sent_sim(df_train.iloc[105]['question'], df_train.iloc[103]['caption'])195t1 = sent_sim('Is there a travel guide on the table?', 'A place of cake and coffee are on an outdoor table')196t2 = sent_sim('yes', 'A place of cake and coffee are on an outdoor table')197t3 = sent_sim('no', 'no')198df_train.iloc[105]['question'] #ì ì¬ë ì¢ ì´ìí ë¯ ë무 ëê² ëì¤ë ê² ê°ìëë199df_train.iloc[103]['caption']200cos_sim(txt2vec('e'), txt2vec('z'))201new_i = re.sub(202            r"([.,'!?\"()*#:;])",203            '',204            df_train.iloc[102]['question'].lower()205        ).replace('-', ' ').replace('/', ' ').split()...questiongen.py
Source:questiongen.py  
1from random import randint2from math import ceil,floor3from question_list import addition, subtraction, multiplication, division, mixed4class QuestionGenerator():5    def __init__(self, itemType, itemUnit, itemName, itemPluralName, itemCost, numberOfGuests, level, question_num):6        self.itemType = itemType7        self.itemName = itemName8        self.itemPlurName = itemPluralName9        self.itemUnit = int(itemUnit)10        self.itemCost = int(itemCost)11        self.guestsNum = int(numberOfGuests)12        self.level = int(level)13        self.question_num = int(question_num)14        if (self.level <= 3):15            self.multcap = 516            self.addcap = 2517        elif (self.level <= 6):18            self.multcap = 719            self.addcap = 5020        else:21            self.multcap = 922            self.addcap = 5023        self.divcap = self.multcap**224        self.subcap = self.addcap*225    def generate(self):26        add_q    = addition         (self.itemCost, self.itemUnit, self.itemPlurName, self.addcap,  self.itemName)27        sub_q    = subtraction      (self.itemCost, self.itemUnit, self.itemPlurName, self.subcap,  self.itemName)28        mult_q   = multiplication   (self.itemCost, self.itemUnit, self.itemPlurName, self.multcap, self.itemName)29        div_q    = division         (self.itemCost, self.itemUnit, self.itemPlurName, self.multcap, self.itemName, self.guestsNum)30        mix_q    = mixed            (self.itemCost, self.itemUnit, self.itemPlurName, self.multcap, self.itemName, self.guestsNum)31        if(self.question_num == 1):32            return addition(self.itemCost, self.itemUnit, self.itemPlurName, self.addcap,  self.itemName)33        elif(self.question_num == 2):34            return subtraction(self.itemCost, self.itemUnit, self.itemPlurName, self.subcap,  self.itemName)35        elif(self.question_num == 3):36            return multiplication(self.itemCost, self.itemUnit, self.itemPlurName, self.multcap, self.itemName)37        elif(self.question_num == 4):38            return division(self.itemCost, self.itemUnit, self.itemPlurName, self.multcap, self.itemName, self.guestsNum)39        elif(self.question_num == 5):...addcap.py
Source:addcap.py  
1#!/usr/bin/python2import sys,os3usage="""4Add Cap Using tLEaP.5Firstly addh6Then add cap NME and ACE to the C- and N- terminal of each peptide7Usage $0 in.pdb out.pdb8"""9if len(sys.argv)<3:10    print usage11    sys.exit()12infile,outfile=sys.argv[1:3]13leap1in='''14source leaprc.ff14SB15rec = loadpdb %s16savepdb rec addcap_tmp.pdb17quit18'''19ofp=open("addcap_tleap1.in","w")20ofp.write(leap1in%infile)21ofp.close()22os.system("tleap -f addcap_tleap1.in")23firstresi=True24lastter=True25cachedlines=""26oldindex=027ofp=open("addcap_tmp2.pdb","w")28for line in open("addcap_tmp.pdb","r"):29    if len(line)>30:index=int(line[22:26])30    if index!=oldindex:31        firstresi=lastter32    oldindex=index33    if firstresi:34        if " H1 " not in line and " H2 " not in line and " H3 " not in line :35            cachedlines=cachedlines+line36    if not firstresi:37        ofp.write(cachedlines)38        cachedlines=""39    if "OXT" in line:40        ofp.write("%s N   NME%s"%(line[:12],line[20:]))41    elif "H3 " in line:42        ofp.write("%s C   ACE%s"%(line[:12],line[20:]))43    elif not firstresi:44        ofp.write(line)45    else:46        pass47    lastter=("TER" in line)48ofp.close()49leap2in='''50source leaprc.ff14SB51rec = loadpdb addcap_tmp2.pdb52savepdb rec %s53quit54'''55ofp=open("addcap_leap2.in","w")56ofp.write(leap2in%outfile)57ofp.close()...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
