Best Python code snippet using fMBT_python
non_greedy_mv.py
Source:non_greedy_mv.py  
...11from matplotlib.collections import LineCollection12from matplotlib import colors as mcolors13import numpy as np14import math15def draw_mv_ls(axis, mv_ls, mode=0):16  colors = np.array([(1., 0., 0., 1.)])17  segs = np.array([18      np.array([[ptr[0], ptr[1]], [ptr[0] + ptr[2], ptr[1] + ptr[3]]])19      for ptr in mv_ls20  ])21  line_segments = LineCollection(22      segs, linewidths=(1.,), colors=colors, linestyle='solid')23  axis.add_collection(line_segments)24  if mode == 0:25    axis.scatter(mv_ls[:, 0], mv_ls[:, 1], s=2, c='b')26  else:27    axis.scatter(28        mv_ls[:, 0] + mv_ls[:, 2], mv_ls[:, 1] + mv_ls[:, 3], s=2, c='b')29def draw_pred_block_ls(axis, mv_ls, bs, mode=0):30  colors = np.array([(0., 0., 0., 1.)])31  segs = []32  for ptr in mv_ls:33    if mode == 0:34      x = ptr[0]35      y = ptr[1]36    else:37      x = ptr[0] + ptr[2]38      y = ptr[1] + ptr[3]39    x_ls = [x, x + bs, x + bs, x, x]40    y_ls = [y, y, y + bs, y + bs, y]41    segs.append(np.column_stack([x_ls, y_ls]))42  line_segments = LineCollection(43      segs, linewidths=(.5,), colors=colors, linestyle='solid')44  axis.add_collection(line_segments)45def read_frame(fp, no_swap=0):46  plane = [None, None, None]47  for i in range(3):48    line = fp.readline()49    word_ls = line.split()50    word_ls = [int(item) for item in word_ls]51    rows = word_ls[0]52    cols = word_ls[1]53    line = fp.readline()54    word_ls = line.split()55    word_ls = [int(item) for item in word_ls]56    plane[i] = np.array(word_ls).reshape(rows, cols)57    if i > 0:58      plane[i] = plane[i].repeat(2, axis=0).repeat(2, axis=1)59  plane = np.array(plane)60  if no_swap == 0:61    plane = np.swapaxes(np.swapaxes(plane, 0, 1), 1, 2)62  return plane63def yuv_to_rgb(yuv):64  #mat = np.array([65  #    [1.164,   0   , 1.596  ],66  #    [1.164, -0.391, -0.813],67  #    [1.164, 2.018 , 0     ] ]68  #               )69  #c = np.array([[ -16 , -16 , -16  ],70  #              [ 0   , -128, -128 ],71  #              [ -128, -128,   0  ]])72  mat = np.array([[1, 0, 1.4075], [1, -0.3445, -0.7169], [1, 1.7790, 0]])73  c = np.array([[0, 0, 0], [0, -128, -128], [-128, -128, 0]])74  mat_c = np.dot(mat, c)75  v = np.array([mat_c[0, 0], mat_c[1, 1], mat_c[2, 2]])76  mat = mat.transpose()77  rgb = np.dot(yuv, mat) + v78  rgb = rgb.astype(int)79  rgb = rgb.clip(0, 255)80  return rgb / 255.81def read_feature_score(fp, mv_rows, mv_cols):82  line = fp.readline()83  word_ls = line.split()84  feature_score = np.array([math.log(float(v) + 1, 2) for v in word_ls])85  feature_score = feature_score.reshape(mv_rows, mv_cols)86  return feature_score87def read_mv_mode_arr(fp, mv_rows, mv_cols):88  line = fp.readline()89  word_ls = line.split()90  mv_mode_arr = np.array([int(v) for v in word_ls])91  mv_mode_arr = mv_mode_arr.reshape(mv_rows, mv_cols)92  return mv_mode_arr93def read_frame_dpl_stats(fp):94  line = fp.readline()95  word_ls = line.split()96  frame_idx = int(word_ls[1])97  mi_rows = int(word_ls[3])98  mi_cols = int(word_ls[5])99  bs = int(word_ls[7])100  ref_frame_idx = int(word_ls[9])101  rf_idx = int(word_ls[11])102  gf_frame_offset = int(word_ls[13])103  ref_gf_frame_offset = int(word_ls[15])104  mi_size = bs / 8105  mv_ls = []106  mv_rows = int((math.ceil(mi_rows * 1. / mi_size)))107  mv_cols = int((math.ceil(mi_cols * 1. / mi_size)))108  for i in range(mv_rows * mv_cols):109    line = fp.readline()110    word_ls = line.split()111    row = int(word_ls[0]) * 8.112    col = int(word_ls[1]) * 8.113    mv_row = int(word_ls[2]) / 8.114    mv_col = int(word_ls[3]) / 8.115    mv_ls.append([col, row, mv_col, mv_row])116  mv_ls = np.array(mv_ls)117  feature_score = read_feature_score(fp, mv_rows, mv_cols)118  mv_mode_arr = read_mv_mode_arr(fp, mv_rows, mv_cols)119  img = yuv_to_rgb(read_frame(fp))120  ref = yuv_to_rgb(read_frame(fp))121  return rf_idx, frame_idx, ref_frame_idx, gf_frame_offset, ref_gf_frame_offset, mv_ls, img, ref, bs, feature_score, mv_mode_arr122def read_dpl_stats_file(filename, frame_num=0):123  fp = open(filename)124  line = fp.readline()125  width = 0126  height = 0127  data_ls = []128  while (line):129    if line[0] == '=':130      data_ls.append(read_frame_dpl_stats(fp))131    line = fp.readline()132    if frame_num > 0 and len(data_ls) == frame_num:133      break134  return data_ls135if __name__ == '__main__':136  filename = sys.argv[1]137  data_ls = read_dpl_stats_file(filename, frame_num=5)138  for rf_idx, frame_idx, ref_frame_idx, gf_frame_offset, ref_gf_frame_offset, mv_ls, img, ref, bs, feature_score, mv_mode_arr in data_ls:139    fig, axes = plt.subplots(2, 2)140    axes[0][0].imshow(img)141    draw_mv_ls(axes[0][0], mv_ls)142    draw_pred_block_ls(axes[0][0], mv_ls, bs, mode=0)143    #axes[0].grid(color='k', linestyle='-')144    axes[0][0].set_ylim(img.shape[0], 0)145    axes[0][0].set_xlim(0, img.shape[1])146    if ref is not None:147      axes[0][1].imshow(ref)148      draw_mv_ls(axes[0][1], mv_ls, mode=1)149      draw_pred_block_ls(axes[0][1], mv_ls, bs, mode=1)150      #axes[1].grid(color='k', linestyle='-')151      axes[0][1].set_ylim(ref.shape[0], 0)152      axes[0][1].set_xlim(0, ref.shape[1])153    axes[1][0].imshow(feature_score)154    #feature_score_arr = feature_score.flatten()155    #feature_score_max = feature_score_arr.max()156    #feature_score_min = feature_score_arr.min()157    #step = (feature_score_max - feature_score_min) / 20.158    #feature_score_bins = np.arange(feature_score_min, feature_score_max, step)159    #axes[1][1].hist(feature_score_arr, bins=feature_score_bins)160    im = axes[1][1].imshow(mv_mode_arr)161    #axes[1][1].figure.colorbar(im, ax=axes[1][1])162    print rf_idx, frame_idx, ref_frame_idx, gf_frame_offset, ref_gf_frame_offset, len(mv_ls)163    flatten_mv_mode = mv_mode_arr.flatten()...test_transforms.py
Source:test_transforms.py  
...54    ifls = [S(533)/672 + 3*I/2, S(23)/224 + I/2, S(1)/672, S(107)/224 - I,55        S(155)/672 + 3*I/2, -S(103)/224 + I/2, -S(377)/672, -S(19)/224 - I]56    assert ifwht(ls) == ifls57    assert fwht(ifls) == ls + [S.Zero]*358    x, y = symbols('x y')59    raises(TypeError, lambda: fwht(x))60    ls = [x, 2*x, 3*x**2, 4*x**3]61    ifls = [x**3 + 3*x**2/4 + 3*x/4,62        -x**3 + 3*x**2/4 - x/4,63        -x**3 - 3*x**2/4 + 3*x/4,64        x**3 - 3*x**2/4 - x/4]65    assert ifwht(ls) == ifls66    assert fwht(ifls) == ls67    ls = [x, y, x**2, y**2, x*y]68    fls = [x**2 + x*y + x + y**2 + y,69        x**2 + x*y + x - y**2 - y,70        -x**2 + x*y + x - y**2 + y,71        -x**2 + x*y + x + y**2 - y,72        x**2 - x*y + x + y**2 + y,73        x**2 - x*y + x - y**2 - y,74        -x**2 - x*y + x - y**2 + y,75        -x**2 - x*y + x + y**2 - y]76    assert fwht(ls) == fls77    assert ifwht(fls) == ls + [S.Zero]*378    ls = list(range(6))79    assert fwht(ls) == [x*8 for x in ifwht(ls)]80def test_mobius_transform():81    assert all(tf(ls, subset=subset) == ls82                for ls in ([], [S(7)/4]) for subset in (True, False)83                for tf in (mobius_transform, inverse_mobius_transform))84    w, x, y, z = symbols('w x y z')85    assert mobius_transform([x, y]) == [x, x + y]86    assert inverse_mobius_transform([x, x + y]) == [x, y]87    assert mobius_transform([x, y], subset=False) == [x + y, y]88    assert inverse_mobius_transform([x + y, y], subset=False) == [x, y]89    assert mobius_transform([w, x, y, z]) == [w, w + x, w + y, w + x + y + z]90    assert inverse_mobius_transform([w, w + x, w + y, w + x + y + z]) == \91            [w, x, y, z]92    assert mobius_transform([w, x, y, z], subset=False) == \93            [w + x + y + z, x + z, y + z, z]94    assert inverse_mobius_transform([w + x + y + z, x + z, y + z, z], subset=False) == \95            [w, x, y, z]96    ls = [S(2)/3, S(6)/7, S(5)/8, 9, S(5)/3 + 7*I]97    mls = [S(2)/3, S(32)/21, S(31)/24, S(1873)/168,98            S(7)/3 + 7*I, S(67)/21 + 7*I, S(71)/24 + 7*I,...63010841_Lab9_03.py
Source:63010841_Lab9_03.py  
1# รัà¸à¸à¸³à¸à¸§à¸à¹à¸à¹à¸¡à¸¡à¸² 1 à¸à¸³à¸à¸§à¸à¹à¸¥à¹à¸§à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸à¸±à¸à¸à¸µà¹2# - หาภinput à¸à¸µà¹à¸£à¸±à¸à¸¡à¸²à¸à¸±à¹à¸à¸¡à¸µà¸à¸²à¸£à¹à¸£à¸µà¸¢à¸à¸¥à¸³à¸à¸±à¸à¸à¸²à¸à¸à¹à¸à¸¢à¹à¸à¸¡à¸²à¸ à¹à¸¥à¸°à¹à¸¡à¹à¸¡à¸µà¸à¸±à¸§à¸à¹à¸³à¹à¸¥à¸¢à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸§à¹à¸² "Metadrome"3# - หาภinput à¸à¸µà¹à¸£à¸±à¸à¸¡à¸²à¸à¸±à¹à¸à¸¡à¸µà¸à¸²à¸£à¹à¸£à¸µà¸¢à¸à¸¥à¸³à¸à¸±à¸à¸à¸²à¸à¸à¹à¸à¸¢à¹à¸à¸¡à¸²à¸ à¹à¸¥à¸°à¸¡à¸µà¸à¸±à¸§à¸à¹à¸³à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸§à¹à¸² "Plaindrome"4# - หาภinput à¸à¸µà¹à¸£à¸±à¸à¸¡à¸²à¸à¸±à¹à¸à¸¡à¸µà¸à¸²à¸£à¹à¸£à¸µà¸¢à¸à¸¥à¸³à¸à¸±à¸à¸à¸²à¸à¸¡à¸²à¸à¹à¸à¸à¹à¸à¸¢ à¹à¸¥à¸°à¹à¸¡à¹à¸¡à¸µà¸à¸±à¸§à¸à¹à¸³à¹à¸¥à¸¢à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸§à¹à¸² "Katadrome"5# - หาภinput à¸à¸µà¹à¸£à¸±à¸à¸¡à¸²à¸à¸±à¹à¸à¸¡à¸µà¸à¸²à¸£à¹à¸£à¸µà¸¢à¸à¸¥à¸³à¸à¸±à¸à¸à¸²à¸à¸¡à¸²à¸à¹à¸à¸à¹à¸à¸¢ à¹à¸¥à¸°à¸¡à¸µà¸à¸±à¸§à¸à¹à¸³à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸§à¹à¸² "Nialpdrome"6# - หาภinput à¸à¸µà¹à¸£à¸±à¸à¸¡à¸²à¸à¸±à¹à¸à¸à¸¸à¸à¸«à¸¥à¸±à¸à¹à¸à¹à¸à¹à¸¥à¸à¹à¸à¸µà¸¢à¸§à¸à¸±à¸à¸«à¸¡à¸ à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸§à¹à¸² "Repdrome"7# - หาà¸à¹à¸¡à¹à¸à¸¢à¸¹à¹à¹à¸à¹à¸à¸·à¹à¸à¸à¹à¸à¸à¹à¸²à¸à¸à¸à¹à¸¥à¸¢ à¹à¸«à¹à¹à¸ªà¸à¸à¸à¸¥à¸§à¹à¸² "Nondrome"8# ****** หà¹à¸²à¸¡à¹à¸à¹ Built-in Function à¸à¸µà¹à¹à¸à¸µà¹à¸¢à¸§à¸à¸±à¸ Sort à¹à¸«à¹à¸à¹à¸à¸à¹à¸à¸µà¸¢à¸à¸à¸±à¸à¸à¹à¸à¸±à¸ Sort à¹à¸à¸9def bubble_sort_acend(ls):10    for i in range(len(ls)):11        for j in range(len(ls) - 1):12            if ls[j] > ls[j+1]:13                # Swap14                ls[j], ls[j+1] = ls[j+1], ls[j]15    return ls16def bubble_sort_decend(ls):17    for i in range(len(ls)):18        for j in range(len(ls) - 1):19            if ls[j] < ls[j+1]:20                # Swap21                ls[j], ls[j+1] = ls[j+1], ls[j]22    return ls23    24def ascending_order(ls):25    copy = ls[::]26    copy = bubble_sort_acend(copy)27    return ls == copy28def decending_order(ls):29    copy = ls[::]30    copy = bubble_sort_decend(copy)31    return ls == copy32def doub_check(ls):33    for i in range(len(ls)):34        for j in range(i+1,len(ls)):35            if ls[i] == ls[j]:36                return True37    return False38def same_check(ls):39    for i in range(len(ls)):40        if ls[0] != ls[i]:41            return False42    return True43inp = [int(x) for x in input('Enter Input : ')]44decending_order(inp)45# Metadrome46if ascending_order(inp) and not doub_check(inp) and not same_check(inp):47    print('Metadrome')48# Plaindrome49elif ascending_order(inp) and doub_check(inp) and not same_check(inp):50    print('Plaindrome')51# Katadrome52elif decending_order(inp) and not doub_check(inp) and not same_check(inp):53    print('Katadrome')54# Nialpdrome55elif decending_order(inp) and doub_check(inp) and not same_check(inp):56    print('Nialpdrome')57# Repdrome58elif same_check(inp):59    print('Repdrome')60# Nondrome61else:...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
