Best Python code snippet using fMBT_python
relaxation_test.py
Source:relaxation_test.py  
...27    msd = 4 * time * known_diffusion + offset28    diff, diff_err = relaxation.diffusion_constant(time, msd)29    assert np.isclose(diff, known_diffusion)30    assert np.isclose(diff_err, 0)31def test_exponential_relax():32    """Ensure the exponential_relaxation function working appropriately."""33    known_decay = 1e434    time = np.arange(100000)35    value = np.exp(-time / known_decay)36    relax, *_ = relaxation.exponential_relaxation(time, value)37    assert np.isclose(relax, known_decay)38@pytest.fixture39def linear_relax():40    num_values = 100041    time = np.arange(num_values)42    values = np.arange(num_values) / num_values43    return time, values44class TestThresholdRelaxation:45    def test_decay(self, linear_relax):46        time, values = linear_relax47        # This is to turn the linear growth into linear decay48        values = 1 - values49        logger.debug("Values: %s", values)50        relax, _ = relaxation.threshold_relaxation(51            time, values, threshold=0.5, decay=True52        )53        assert relax == len(time) / 2 + 1...problem_3.py
Source:problem_3.py  
1# import the code for the simulation2from simulator import Simulation3import matplotlib.pyplot as plt4import matplotlib5matplotlib.use("TkAgg")6import numpy as np7from time import time8plt.rc('font', family='serif')9plt.rcParams['text.usetex'] = False10fs = 1811# update various fontsizes to match12params = {'figure.figsize': (12, 8),13          'legend.fontsize': fs,14          'axes.labelsize': fs,15          'xtick.labelsize': 0.9 * fs,16          'ytick.labelsize': 0.9 * fs,17          'axes.linewidth': 1.1,18          'xtick.major.size': 7,19          'xtick.minor.size': 4,20          'ytick.major.size': 7,21          'ytick.minor.size': 4}22plt.rcParams.update(params)23def t_relax_analytic(N, size, radius, E, mass):24    n = N / size**225    sigma = radius * 226    v0 = np.sqrt(2 * E / mass)27    return (n * sigma * v0)**(-1)28def get_N_comparison(size=1000, radius=20, E=0.1, mass=1, repeats=10):29    start = time()30    N_range = np.array([25, 50, 75, 100, 125, 150, 175, 200])31    t_relax_list = []32    for N in N_range:33        t_relax = []34        for _ in range(repeats):35            sim = Simulation(N=N, E=E, size=size, radius=radius, masses=mass, visualise=False)36            t_relax.append(sim.run_simulation(run_until_steadystate=True))37        print("N =", N, "done", t_relax)38        t_relax_list.append(t_relax)39    np.save("data/t_relax_N.npy", t_relax_list)40    print("Runtime {:1.2f}s".format(time() - start))41    return N_range, t_relax_list42def get_r_comparison(N=100, size=1000, E=0.1, mass=1, repeats=10):43    start = time()44    r_range = np.array([10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30])45    t_relax_list = []46    for radius in r_range:47        t_relax = []48        for _ in range(repeats):49            sim = Simulation(N=N, E=E, size=size, radius=radius, masses=mass, visualise=False)50            t_relax.append(sim.run_simulation(run_until_steadystate=True))51        print("r =", radius, "done", t_relax)52        t_relax_list.append(t_relax)53    np.save("data/t_relax_r.npy", t_relax_list)54    print("Runtime {:1.2f}s".format(time() - start))55    return r_range, t_relax_list56def main():57    N = 10058    radius = 2059    size = 100060    E = 0.161    mass = 162    fig, axes = plt.subplots(1, 2, figsize=(18, 7))63    N_range, t_relax_N = get_N_comparison(radius=radius, size=size, E=E, mass=mass)64    r_range, t_relax_r = get_r_comparison(N=N, size=size, E=E, mass=mass)65    ax = axes[0]66    t_relax = t_relax_N67    N_range_smooth = np.linspace(N_range.min(), N_range.max(), 1000)68    ax.plot(N_range_smooth, t_relax_analytic(N_range_smooth, size, radius, E, mass) * 1.2,69            linestyle="dotted", lw=3, color=plt.get_cmap("plasma")(0.8),70            label=r"Analytic function, $X = 1.2$")71    ax.set_xlabel(r"Number of Particles")72    ax.set_ylabel(r"Relaxation Time, $\tau_{\rm relax} \, [\rm s]$")73    ax.errorbar(N_range, np.median(t_relax, axis=1), xerr=0.0,74                yerr=[np.median(t_relax, axis=1) - np.min(t_relax, axis=1),75                      np.max(t_relax, axis=1) - np.median(t_relax, axis=1)],76                marker="o", color=plt.get_cmap("plasma")(0.2), label="Simulated results")77    ax.legend()78    ax = axes[1]79    t_relax = t_relax_r80    r_range_smooth = np.linspace(r_range.min(), r_range.max(), 1000)81    ax.plot(r_range_smooth, t_relax_analytic(N=N, size=size, radius=r_range_smooth, E=E, mass=mass) * 1.2,82            linestyle="dotted", lw=3, color=plt.get_cmap("plasma")(0.8),83            label=r"Analytic function, $X = 1.2$")84    ax.set_xlabel(r"Radius, $r \, [\rm cm]$")85    ax.set_ylabel(r"Relaxation Time, $\tau_{\rm relax} \, [\rm s]$")86    ax.errorbar(r_range, np.median(t_relax, axis=1), xerr=0.0,87                yerr=[np.median(t_relax, axis=1) - np.min(t_relax, axis=1),88                      np.max(t_relax, axis=1) - np.median(t_relax, axis=1)],89                marker="o", color=plt.get_cmap("plasma")(0.2), label="Simulated results")90    ax.legend()91    plt.savefig("figures/3c.pdf", format="pdf", bbox_inches="tight")92    plt.show()93if __name__ == "__main__":...relax.py
Source:relax.py  
1import os2import yaml3import sys4import logging5def check_package(package_name,import_name):6    from importlib.util import find_spec7    has_lib = find_spec(package_name)8    if not has_lib:9        print("%s is not installed!!"%(import_name))10        return False11       12if __name__ == "__main__":13    package_list = {"biopython":"Bio","pandas":"pandas"}14    config_path = os.path.join(os.path.dirname(sys.argv[0]),"config.yaml")15    with open(config_path,"r") as f:16        config = yaml.load(f,Loader=yaml.FullLoader)17    #relax18    19        #score_jd220    if config["relax"]["need_prepare"]:21        cmd = os.path.join(os.path.dirname(sys.argv[0]),"jd2.run.sh") + " " +\22            config["input"]["path"] +" " +\23            os.path.join(config["input"]["rosetta_bin"],config["relax"]["score_jd2_exec"])24        ex = os.system(cmd)25        if ex:26            logging.error("run score_jd2 failed !")27            sys.exit(1)28        jd2_file = os.path.abspath(config["input"]["path"]) + "/jd2_pdb.list"29    else:30        jd2_file = config["input"]["path"]31    #if mpi_run relax32    if config["relax"]["mpi_run"]["use_mpi"]:33        mpi_cores = str(config["relax"]["mpi_run"]["mpi_cores"])34    else:35        mpi_cores = "0"36    #run relax37    cmd = os.path.join(os.path.dirname(sys.argv[0]),"relax.run.sh") + " " +\38        str(mpi_cores) + " " +\39        str(config["relax"]["relax_threads"])+ " " +\40        os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]),config["relax"]["flag"])) + " " +\41        os.path.join(config["input"]["rosetta_bin"],config["relax"]["relax_exec"]) + " " +\42        jd2_file + " " +\43        config["input"]["path"]44    ex = os.system(cmd)45    if ex:46        logging.error("run relax failed !")47        sys.exit(1)48    relax_file = os.path.abspath(config["input"]["path"]) + "/relax_sc.list"49    could_flex = True50    51        ...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
