Best Python code snippet using green
ssa_case_complex_no_sugar.py
Source:ssa_case_complex_no_sugar.py  
1import os2import random3from collections import Counter, defaultdict4import random5from nltk.tag import StanfordNERTagger6from nltk.tokenize import word_tokenize7from nltk import pos_tag8from nltk.chunk import conlltags2tree9from nltk.tree import Tree10import pandas as pd11from htrc_features import FeatureReader12import geocoder13import folium14from pprint import pprint15from tqdm import tqdm16USERNAME = os.getenv('USERNAME')17st = StanfordNERTagger(18    '/usr/local/share/stanford-ner/classifiers/english.all.3class.distsim.crf.ser.gz'19    , '/usr/local/share/stanford-ner/stanford-ner.jar', encoding='utf-8')20def stanfordNE2BIO(tagged_sent):21    bio_tagged_sent = []22    prev_tag = 'O'23    for token, tag in tagged_sent:24        if tag == 'O':25            bio_tagged_sent.append((token, tag))26            prev_tag = tag27            continue28        if tag != 'O' and prev_tag == 'O':29            bio_tagged_sent.append((token, 'B-' + tag))30            prev_tag = tag31        elif prev_tag != 'O' and prev_tag == tag:32            bio_tagged_sent.append((token, 'I-' + tag))33            prev_tag = tag34        elif prev_tag != 'O' and prev_tag != tag:35            bio_tagged_sent.append((token, 'B-' + tag))36            prev_tag = tag37    return bio_tagged_sent38def stanfordNE2tree(ne_tagged_sent):39    bio_tagged_sent = stanfordNE2BIO(ne_tagged_sent)40    sent_tokens, sent_ne_tags = zip(*bio_tagged_sent)41    _hidden_sent_pos_tags = []42    for token, pos in pos_tag(sent_tokens):43        _hidden_sent_pos_tags.append(pos)44    sent_pos_tags = _hidden_sent_pos_tags45    _hidden_sent_conlltags = []46    for token, pos, ne in zip(sent_tokens, sent_pos_tags, sent_ne_tags):47        _hidden_sent_conlltags.append((token, pos, ne))48    sent_conlltags = _hidden_sent_conlltags49    ne_tree = conlltags2tree(sent_conlltags)50    return ne_tree51########### example52htid = 'wu.89079728994'53fr = FeatureReader(ids=[htid])54for vol in fr:55    tokens = vol.tokenlist()56temp = tokens.index.values.tolist()57########################58counts = pd.DataFrame.from_records(temp, columns=['page', 'section',59    'token', 'pos'])60counts['count'] = tokens['count'].tolist()61counts[:10]62_hidden_res_71_17 = zip(counts['token'].tolist(), counts['count'].tolist())63text_data = list(_hidden_res_71_17)64text_list = []65for w, c in text_data:66    for i in range(0, c):67        text_list.append(w)68random.shuffle(text_list)69text_reconstruction = ' '.join(text_list)70tokens = word_tokenize(text_reconstruction)71tagged_tokens = st.tag(tokens)72_hidden_tagged_tokens = []73for item in tagged_tokens:74    if item[0] != '':75        _hidden_tagged_tokens.append(item)76tagged_tokens = _hidden_tagged_tokens77ne_tree = stanfordNE2tree(tagged_tokens)78ne_in_sent = []79for subtree in ne_tree:80    if type(subtree) == Tree:81        ne_label = subtree.label()82        _hidden_res_88_29 = []83        for token, pos in subtree.leaves():84            _hidden_res_88_29.append(token)85        ne_string = ' '.join(_hidden_res_88_29)86        ne_in_sent.append((ne_string, ne_label))87_hidden_locations = []88for tag in ne_in_sent:89    if tag[1] == 'LOCATION':90        _hidden_locations.append(tag[0].title())91locations = _hidden_locations92print(locations)93most_common_locations = Counter(locations).most_common(10)94pprint(most_common_locations)95_hidden_places_list = []96for name, _ in most_common_locations:97    _hidden_places_list.append(name)98places_list = _hidden_places_list[:3]99most_common_locations = dict(most_common_locations)100geocoder_results = []101for place in places_list:102    results = geocoder.geonames(place, maxRows=5, key=USERNAME)103    jsons = []104    for result in results:105        jsons.append(result.json)106    geocoder_results.append(jsons)107countries = []108for results in geocoder_results:109    for item in results:110        if 'country' in item.keys():111            countries.append(item['country'])112top_country = sorted(Counter(countries))[0]113print(top_country)114coordinates = []115for i, results in enumerate(geocoder_results):116    for item in results:117        if item['country'] == top_country:118            coordinates.append((float(item['lat']), float(item['lng'])))119            break120print(places_list)121print(coordinates)122basemap = folium.Map(location=[37.97945, 23.71622], zoom_start=8, tiles=123    'cartodbpositron', width=960, height=512)124for i, c in enumerate(coordinates):125    folium.CircleMarker([c[0], c[1]], radius=most_common_locations[126        places_list[i]] * 0.25, color='#3186cc', fill=True, fill_opacity=127        0.5, fill_color='#3186cc', popup=128        '{} ({}, {}) appears {} times in book.'.format(places_list[i], c[0],129        c[1], most_common_locations[places_list[i]])).add_to(basemap)130print(131    'Map of relevant locations in Broneer et al.\'s "Ancient Corinth: A guide to the excavations," weighted by frequency.'132    )133basemap134page = 87135test = counts[counts['page'] == page]['token'].tolist()136print(test)137print(len(test))138from nltk.corpus import stopwords139_hidden_res_137_12 = stopwords.words('english')140stops = set(_hidden_res_137_12)141pns_list = []142for i in range(1, max(counts['page']) + 1):143    tokens = counts[counts['page'] == i]['token'].tolist()144    _hidden_tokens = []145    for token in tokens:146        if token.lower() not in stops and len(token) > 2:147            _hidden_tokens.append(token)148    tokens = _hidden_tokens149    _hidden_pns = []150    for token in tokens:151        if token[0].isupper():152            _hidden_pns.append(token)153    pns = _hidden_pns154    _hidden_combs = []155    for x, y in combinations(pns, 2):156        _hidden_combs.append(f'{x} {y}')157    combs = _hidden_combs158    pns_list.extend(combs)159print([x for x, y in Counter(pns_list).most_common(25)])160geocoder_results = []161for place in pns_list[:15]:162    results = geocoder.geonames(place, maxRows=5, key=USERNAME)163    jsons = []164    for result in results:165        jsons.append(result.json)166    geocoder_results.append(jsons)167geocoder_results168results = geocoder.geonames('Roman Forum', maxRows=5, key=USERNAME)169print(next(result.address for result in results))170g = geocoder.google('Al-Fayum')171print(g.latlng)172coordinates = [g.latlng]173basemap = folium.Map(location=[37.97945, 23.71622], zoom_start=8, tiles=174    'cartodbpositron', width=960, height=512)175for i, c in enumerate(coordinates):176    folium.CircleMarker([c[0], c[1]], radius=most_common_locations[177        places_list[i]] * 0.25, color='#3186cc', fill=True, fill_opacity=178        0.5, fill_color='#3186cc').add_to(basemap)179basemap180_hidden_test = []181for x, y in Counter(pns_list).most_common(10):182    _hidden_test.append(x)183test = _hidden_test184places = []185coordinates = []186for item in test:187    g = geocoder.google(item)188    if g:189        places.append(g.address)190        print(g.address)191        coordinates.append(g.latlng)192basemap = folium.Map(location=[37.97945, 23.71622], zoom_start=8, tiles=193    'cartodbpositron', width=960, height=512)194for i, c in enumerate(coordinates):195    folium.CircleMarker([c[0], c[1]], color='#3186cc', fill=True,196        fill_opacity=0.5, fill_color='#3186cc').add_to(basemap)...test_constructs.py
Source:test_constructs.py  
1import copy2from neuralogic.core.constructs.relation import BaseRelation, WeightedRelation3from neuralogic.core import R, Activation, Aggregation, Metadata, ActivationAgg, V4from neuralogic.core.constructs.rule import Rule5def test_predicate_creation() -> None:6    """Test different ways of predicate creation"""7    relation = R.lorem_ipsum8    predicate = relation / 19    assert predicate.arity == 110    assert predicate.name == "lorem_ipsum"11    assert predicate.special is False12    assert predicate.hidden is False13    predicate = relation / 214    assert predicate.arity == 215    assert relation.predicate.arity == 016    assert relation.predicate.name == "lorem_ipsum"17    assert relation.predicate.special is False18    assert relation.predicate.hidden is False19    relation = R.special.lorem_ipsum20    predicate = relation / 121    assert predicate.special is True22    assert predicate.hidden is False23    assert relation.predicate.special is True24    assert relation.predicate.hidden is False25    relation = R.hidden.lorem_ipsum26    predicate = relation / 127    assert predicate.special is False28    assert predicate.hidden is True29    assert relation.predicate.special is False30    assert relation.predicate.hidden is True31    relation = R.special.hidden.lorem_ipsum32    predicate = relation / 133    assert predicate.special is True34    assert predicate.hidden is True35    assert relation.predicate.special is True36    assert relation.predicate.hidden is True37    relation = R.special._hidden_test38    predicate = relation / 139    assert predicate.hidden is True40    assert predicate.name == "hidden_test"41    assert predicate.special is True42    relation = R._hidden_test43    predicate = relation / 144    assert predicate.hidden is True45    assert predicate.special is False46    assert predicate.name == "hidden_test"47    relation = R.get("_hidden_test")48    predicate = relation / 149    assert predicate.hidden is True50    assert predicate.special is False51    assert predicate.name == "hidden_test"52    predicate_metadata = R.shortest / 2 | [Activation.SIGMOID]53    assert predicate_metadata.metadata is not None54    assert predicate_metadata.metadata.aggregation is None55    assert predicate_metadata.metadata.activation == Activation.SIGMOID56    predicate_metadata = R.shortest / 2 | [Activation.SIGMOID(ActivationAgg.MAX)]57    assert predicate_metadata.metadata is not None58    assert predicate_metadata.metadata.aggregation is None59    assert str(predicate_metadata.metadata.activation) == "max-sigmoid"60    predicate_metadata = R.shortest / 2 | [ActivationAgg.MIN]61    assert predicate_metadata.metadata is not None62    assert predicate_metadata.metadata.aggregation is None63    assert str(predicate_metadata.metadata.activation) == "min-identity"64    predicate_metadata = R.shortest / 2 | Metadata(activation=ActivationAgg.MAX(Activation.TANH))65    assert predicate_metadata.metadata is not None66    assert predicate_metadata.metadata.aggregation == None67    assert str(predicate_metadata.metadata.activation) == "max-tanh"68def test_relation_creation() -> None:69    """Test relation creation related operations and properties"""70    relation = R.my_atom71    assert len(relation.terms) == 072    assert isinstance(relation, BaseRelation)73    relation = relation("a", "b")74    assert len(relation.terms) == 275    assert isinstance(relation, BaseRelation)76    relation = relation[1, 2]77    assert len(relation.terms) == 278    assert isinstance(relation, WeightedRelation)79    assert relation.weight == (1, 2)80    relation = R.my_atom["abc":1, 2]81    assert len(relation.terms) == 082    assert isinstance(relation, WeightedRelation)83    assert relation.weight == (1, 2)84    assert relation.weight_name == "abc"85    relation = relation.fixed()86    assert relation.is_fixed is True87    relation = R.my_atom88    neg_relation = -relation89    assert neg_relation.function is Activation.REVERSE90    neg_relation = ~relation91    assert neg_relation.function is Activation.REVERSE92    # t_relation = relation.T93    # assert t_relation.function is Activation.TRANSP94def test_rule_metadata():95    rule = (R.a <= R.b) | [Activation.SIGMOID, Aggregation.AVG]96    assert rule.metadata is not None97    assert rule.metadata.aggregation == Aggregation.AVG98    assert rule.metadata.activation == Activation.SIGMOID99    rule = (R.a <= R.b) | Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.MAX)100    assert rule.metadata is not None101    assert rule.metadata.aggregation == Aggregation.MAX102    assert rule.metadata.activation == Activation.IDENTITY103    rule = R.a <= R.b104    assert rule.metadata is None105    rule = (R.a <= R.b) | [ActivationAgg.MAX(Activation.SIGMOID), Aggregation.AVG]106    assert rule.metadata is not None107    assert rule.metadata.aggregation == Aggregation.AVG108    assert str(rule.metadata.activation) == "max-sigmoid"109def test_rules():110    my_rule: Rule = R.a(V.X) <= R.special.alldiff(...)111    assert len(my_rule.body[0].terms) == 1112    assert my_rule.body[0].terms[0] == V.X113    my_rule: Rule = R.a(V.X) <= (R.special.alldiff(...), R.b(V.Y, V.Z))114    assert len(my_rule.body[0].terms) == 3115    terms = sorted(my_rule.body[0].terms)116    assert terms[0] == V.X117    assert terms[1] == V.Y118    assert terms[2] == V.Z119    my_rule = R.a <= R.b120    assert len(my_rule.body) == 1...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
