Best Python code snippet using green
parameters_finding.py
Source:parameters_finding.py  
1import numpy as np2import pandas as pd3from sklearn.ensemble import AdaBoostClassifier4from sklearn.ensemble import GradientBoostingClassifier5from sklearn.model_selection import GridSearchCV6from sklearn.neighbors import KNeighborsClassifier7from sklearn.neural_network import MLPClassifier8from sklearn.svm import SVC9from sklearn.tree import DecisionTreeClassifier10from helpers import get_wine_data11from helpers import get_abalone_data12class EstimatorSelectionHelper:13    def __init__(self, models, params):14        if not set(models.keys()).issubset(set(params.keys())):15            missing_params = list(set(models.keys()) - set(params.keys()))16            raise ValueError("Some estimators are missing parameters: %s" % missing_params)17        self.models = models18        self.params = params19        self.keys = models.keys()20        self.grid_searches = {}21    def fit(self, X, y, cv=3, n_jobs=3, verbose=1, scoring=None, refit=False):22        for key in self.keys:23            print("Running GridSearchCV for %s." % key)24            model = self.models[key]25            params = self.params[key]26            gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs,27                              verbose=verbose, scoring=scoring, refit=refit,28                              return_train_score=True)29            gs.fit(X,y)30            self.grid_searches[key] = gs31    def score_summary(self, sort_by='mean_score'):32        def row(key, scores, params):33            d = {34                 'estimator': key,35                 'min_score': min(scores),36                 'max_score': max(scores),37                 'mean_score': np.mean(scores),38                 'std_score': np.std(scores),39            }40            return pd.Series({**params,**d})41        rows = []42        for k in self.grid_searches:43            print(k)44            params = self.grid_searches[k].cv_results_['params']45            scores = []46            for i in range(self.grid_searches[k].cv):47                key = "split{}_test_score".format(i)48                r = self.grid_searches[k].cv_results_[key]49                scores.append(r.reshape(len(params),1))50            all_scores = np.hstack(scores)51            for p, s in zip(params,all_scores):52                rows.append((row(k, s, p)))53        df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False)54        columns = ['estimator', 'mean_score', 'max_score', 'std_score']55        columns = columns + [c for c in df.columns if c not in columns]56        return df[columns]57models1 = {58    'AdaBoostClassifier': AdaBoostClassifier(base_estimator=DecisionTreeClassifier()),59    'DecisionTreeClassifier': DecisionTreeClassifier(),60    'KNeighborsClassifier': KNeighborsClassifier()61}62params1 = {63    'AdaBoostClassifier':  {64        'n_estimators': [1, 3, 5, 7, 9, 11, 13, 15],65        "base_estimator__criterion": ["gini"],66        "base_estimator__splitter":   ["best", "random"],67        'base_estimator__max_depth': [None, 1, 2, 3],68        'base_estimator__min_samples_leaf': [1, 2, 3, 4, 5]69    },70    'DecisionTreeClassifier': {'max_depth': [None, 1, 2, 3], 'min_samples_leaf': [1, 2, 3, 4, 5]},71    'KNeighborsClassifier': {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9]}72}73models2 = {74    'SVC': SVC()75}76params2 = {77    'SVC': [78        {'kernel': ['linear'], 'C': [1, 10]},79        {'kernel': ['rbf'], 'C': [1, 10], 'gamma': [0.001, 0.0001]},80    ]81}82models3 = {83    'MLPClassifier': MLPClassifier()84}85params3 = {86    'MLPClassifier': {87        'solver': ['lbfgs'],88        'max_iter': [1, 3, 5, 7, 9],89        'alpha': 10.0 ** -np.arange(1, 10),90        'hidden_layer_sizes': np.arange(10, 15),91        'random_state': [0,1]92    }93}94if __name__ == "__main__":95    X, y = get_wine_data()96    X1, y1 = get_abalone_data()97    helper1 = EstimatorSelectionHelper(models1, params1)98    helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)99    results = (helper1.score_summary(sort_by='max_score'))100    results.to_csv("out/wine_params_4.csv")101    helper1 = EstimatorSelectionHelper(models1, params1)102    helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)103    results = (helper1.score_summary(sort_by='max_score'))104    results.to_csv("out/abalone_params_4.csv")105    # helper1 = EstimatorSelectionHelper(models2, params2)106    # helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)107    # results = (helper1.score_summary(sort_by='max_score'))108    # results.to_csv("out/wine_params_2.csv")109    # helper1 = EstimatorSelectionHelper(models2, params2)110    # helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)111    # results = (helper1.score_summary(sort_by='max_score'))112    # results.to_csv("out/abalone_params_2.csv")113    # helper1 = EstimatorSelectionHelper(models3, params3)114    # helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)115    # results = (helper1.score_summary(sort_by='max_score'))116    # results.to_csv("out/wine_params_3.csv")117    # helper1 = EstimatorSelectionHelper(models3, params3)118    # helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)119    # results = (helper1.score_summary(sort_by='max_score'))...parameters_finding_non_svc.py
Source:parameters_finding_non_svc.py  
1import numpy as np2import pandas as pd3from sklearn.ensemble import AdaBoostClassifier4from sklearn.ensemble import GradientBoostingClassifier5from sklearn.model_selection import GridSearchCV6from sklearn.neighbors import KNeighborsClassifier7from sklearn.neural_network import MLPClassifier8from sklearn.svm import SVC9from sklearn.tree import DecisionTreeClassifier10from helpers import get_wine_data11from helpers import get_abalone_data12class EstimatorSelectionHelper:13    def __init__(self, models, params):14        if not set(models.keys()).issubset(set(params.keys())):15            missing_params = list(set(models.keys()) - set(params.keys()))16            raise ValueError("Some estimators are missing parameters: %s" % missing_params)17        self.models = models18        self.params = params19        self.keys = models.keys()20        self.grid_searches = {}21    def fit(self, X, y, cv=3, n_jobs=3, verbose=1, scoring=None, refit=False):22        for key in self.keys:23            print("Running GridSearchCV for %s." % key)24            model = self.models[key]25            params = self.params[key]26            gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs,27                              verbose=verbose, scoring=scoring, refit=refit,28                              return_train_score=True)29            gs.fit(X,y)30            self.grid_searches[key] = gs31    def score_summary(self, sort_by='mean_score'):32        def row(key, scores, params):33            d = {34                 'estimator': key,35                 'min_score': min(scores),36                 'max_score': max(scores),37                 'mean_score': np.mean(scores),38                 'std_score': np.std(scores),39            }40            return pd.Series({**params,**d})41        rows = []42        for k in self.grid_searches:43            print(k)44            params = self.grid_searches[k].cv_results_['params']45            scores = []46            for i in range(self.grid_searches[k].cv):47                key = "split{}_test_score".format(i)48                r = self.grid_searches[k].cv_results_[key]49                scores.append(r.reshape(len(params),1))50            all_scores = np.hstack(scores)51            for p, s in zip(params,all_scores):52                rows.append((row(k, s, p)))53        df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False)54        columns = ['estimator', 'mean_score', 'max_score', 'std_score']55        columns = columns + [c for c in df.columns if c not in columns]56        return df[columns]57models1 = {58    'AdaBoostClassifier': AdaBoostClassifier(),59    'GradientBoostingClassifier': GradientBoostingClassifier(),60    'DecisionTreeClassifier': DecisionTreeClassifier(),61    'KNeighborsClassifier': KNeighborsClassifier()62}63params1 = {64    'AdaBoostClassifier':  {'n_estimators': np.arange(1, 20)},65    'GradientBoostingClassifier': {'n_estimators': np.arange(1, 20), 'learning_rate': 0.1 ** np.arange(1, 10)},66    'DecisionTreeClassifier': {'max_depth': np.arange(1, 20), 'min_samples_leaf': np.arange(1, 20)},67    'KNeighborsClassifier': {'n_neighbors': np.arange(1, 10)}68}69models2 = {70    'SVC': SVC()71}72params2 = {73    'SVC': [74        {'kernel': ['linear'], 'C': [1, 10]},75        {'kernel': ['rbf'], 'C': [1, 10], 'gamma': [0.001, 0.0001]},76    ]77}78models3 = {79    'MLPClassifier': MLPClassifier()80}81params3 = {82    'MLPClassifier': {83        'solver': ['lbfgs'],84        'max_iter': [1, 3, 5, 7, 9],85        'alpha': 10.0 ** -np.arange(1, 10),86        'hidden_layer_sizes': np.arange(10, 15),87        'random_state': [0,1]88    }89}90if __name__ == "__main__":91    X, y = get_wine_data()92    X1, y1 = get_abalone_data()93    # helper1 = EstimatorSelectionHelper(models1, params1)94    # helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)95    # results = (helper1.score_summary(sort_by='max_score'))96    # results.to_csv("out/wine_params_1.csv")97    # helper1 = EstimatorSelectionHelper(models1, params1)98    # helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)99    # results = (helper1.score_summary(sort_by='max_score'))100    # results.to_csv("out/abalone_params_1.csv")101    # helper1 = EstimatorSelectionHelper(models2, params2)102    # helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)103    # results = (helper1.score_summary(sort_by='max_score'))104    # results.to_csv("out/wine_params_2.csv")105    # helper1 = EstimatorSelectionHelper(models2, params2)106    # helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)107    # results = (helper1.score_summary(sort_by='max_score'))108    # results.to_csv("out/abalone_params_2.csv")109    helper1 = EstimatorSelectionHelper(models3, params3)110    helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)111    results = (helper1.score_summary(sort_by='max_score'))112    results.to_csv("out/wine_params_3.csv")113    helper1 = EstimatorSelectionHelper(models3, params3)114    helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)115    results = (helper1.score_summary(sort_by='max_score'))...parameters_finding_ann.py
Source:parameters_finding_ann.py  
1import numpy as np2import pandas as pd3from sklearn.ensemble import AdaBoostClassifier4from sklearn.ensemble import GradientBoostingClassifier5from sklearn.model_selection import GridSearchCV6from sklearn.neighbors import KNeighborsClassifier7from sklearn.neural_network import MLPClassifier8from sklearn.svm import SVC9from sklearn.tree import DecisionTreeClassifier10from helpers import get_wine_data11from helpers import get_abalone_data12class EstimatorSelectionHelper:13    def __init__(self, models, params):14        if not set(models.keys()).issubset(set(params.keys())):15            missing_params = list(set(models.keys()) - set(params.keys()))16            raise ValueError("Some estimators are missing parameters: %s" % missing_params)17        self.models = models18        self.params = params19        self.keys = models.keys()20        self.grid_searches = {}21    def fit(self, X, y, cv=3, n_jobs=3, verbose=1, scoring=None, refit=False):22        for key in self.keys:23            print("Running GridSearchCV for %s." % key)24            model = self.models[key]25            params = self.params[key]26            gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs,27                              verbose=verbose, scoring=scoring, refit=refit,28                              return_train_score=True)29            gs.fit(X,y)30            self.grid_searches[key] = gs31    def score_summary(self, sort_by='mean_score'):32        def row(key, scores, params):33            d = {34                 'estimator': key,35                 'min_score': min(scores),36                 'max_score': max(scores),37                 'mean_score': np.mean(scores),38                 'std_score': np.std(scores),39            }40            return pd.Series({**params,**d})41        rows = []42        for k in self.grid_searches:43            print(k)44            params = self.grid_searches[k].cv_results_['params']45            scores = []46            for i in range(self.grid_searches[k].cv):47                key = "split{}_test_score".format(i)48                r = self.grid_searches[k].cv_results_[key]49                scores.append(r.reshape(len(params),1))50            all_scores = np.hstack(scores)51            for p, s in zip(params,all_scores):52                rows.append((row(k, s, p)))53        df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False)54        columns = ['estimator', 'mean_score', 'max_score', 'std_score']55        columns = columns + [c for c in df.columns if c not in columns]56        return df[columns]57models1 = {58    'AdaBoostClassifier': AdaBoostClassifier(),59    'GradientBoostingClassifier': GradientBoostingClassifier(),60    'DecisionTreeClassifier': DecisionTreeClassifier(),61    'KNeighborsClassifier': KNeighborsClassifier()62}63params1 = {64    'AdaBoostClassifier':  {'n_estimators': np.arange(1, 20)},65    'GradientBoostingClassifier': {'n_estimators': np.arange(1, 20), 'learning_rate': 0.1 ** np.arange(1, 10)},66    'DecisionTreeClassifier': {'max_depth': np.arange(1, 20), 'min_samples_leaf': np.arange(1, 20)},67    'KNeighborsClassifier': {'n_neighbors': np.arange(1, 10)}68}69models2 = {70    'SVC': SVC()71}72params2 = {73    'SVC': [74        {'kernel': ['linear'], 'C': [1, 10]},75        {'kernel': ['rbf'], 'C': [1, 10], 'gamma': [0.001, 0.0001]},76    ]77}78models3 = {79    'MLPClassifier': MLPClassifier()80}81params3 = {82    'MLPClassifier': {83        'solver': ['lbfgs'],84        'max_iter': [1, 3, 5, 7, 9],85        'alpha': 10.0 ** -np.arange(1, 10),86        'hidden_layer_sizes': np.arange(10, 15),87        'random_state': [0,1]88    }89}90if __name__ == "__main__":91    X, y = get_wine_data()92    X1, y1 = get_abalone_data()93    # helper1 = EstimatorSelectionHelper(models1, params1)94    # helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)95    # results = (helper1.score_summary(sort_by='max_score'))96    # results.to_csv("out/wine_params_1.csv")97    # helper1 = EstimatorSelectionHelper(models1, params1)98    # helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)99    # results = (helper1.score_summary(sort_by='max_score'))100    # results.to_csv("out/abalone_params_1.csv")101    helper1 = EstimatorSelectionHelper(models2, params2)102    helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)103    results = (helper1.score_summary(sort_by='max_score'))104    results.to_csv("out/wine_params_2.csv")105    helper1 = EstimatorSelectionHelper(models2, params2)106    helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)107    results = (helper1.score_summary(sort_by='max_score'))108    results.to_csv("out/abalone_params_2.csv")109    # helper1 = EstimatorSelectionHelper(models3, params3)110    # helper1.fit(X, y, scoring='accuracy', n_jobs=4, cv=5)111    # results = (helper1.score_summary(sort_by='max_score'))112    # results.to_csv("out/wine_params_3.csv")113    # helper1 = EstimatorSelectionHelper(models3, params3)114    # helper1.fit(X1, y1, scoring='accuracy', n_jobs=4, cv=5)115    # results = (helper1.score_summary(sort_by='max_score'))...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
