Best Python code snippet using green
datas.py
Source:datas.py  
1import csv2import pandas as pd3import operator4import numpy as np5import json6def get_category():7    df1 = pd.read_csv("êµë¯¼ì°ë ¹ë³ì¶ì²ì´ëì ë³´.csv", encoding='utf-8')8    category1 = df1['BMI_IDEX_GRAD'] == 'ì ì'9    value1 = df1[category1]10    category2 = value1['SPORTS_STEP_NM'] == '본ì´ë'11    value2 = value1[category2]12    category3 = value2['SE_ACCTO_RECOMEND_SPORTS_RANK'] == 113    value3 = value2[category3]14    15    print(value3['RECOMEND_SPORTS_NM'].unique())16def get_each_average(data):17    ave12 = int(data['ITEM_F012'].mean())18    ave19 = int(data['ITEM_F019'].mean())19    ave20 = int(data['ITEM_F020'].mean())20    ave21 = int(data['ITEM_F021'].mean())21    ave22 = int(data['ITEM_F022'].mean())22    result = {"data" : [ave12, ave19, ave20, ave21, ave22]}23    return result24def get_all_average(*args):25    i = 026    section = ['M19to24', 'M25to29', 'M30to34', 'M35to39', 'M40to44', 'M45to49', 'M50to54', 'M55to59', 'M60to64', 'F19to24', 'F25to29', 'F30to34', 'F35to39', 'F40to44', 'F45to49', 'F50to54', 'F55to59', 'F60to64']27    average = []28    for arg in args:29        average.append(get_each_average(arg))30    31    for j in section:32        average[i][j] = average[i]['data']33        del average[i]['data']34        i += 135    return average36def get_average():37    df = pd.read_csv("체력측ì _í목ë³_측ì _ë°ì´í°.csv", encoding='utf-8')38    newdf=df[['AGE_GBN', 'TEST_AGE', 'CERT_GBN', 'TEST_SEX', 'ITEM_F001', 'ITEM_F002', 'ITEM_F012', 'ITEM_F019', 'ITEM_F020', 'ITEM_F021', 'ITEM_F022']]39    newdf=newdf.fillna(newdf.mean())40    is_adult=newdf['AGE_GBN']=='ì±ì¸'41    is_adult=newdf[is_adult]42    is_teen=newdf['AGE_GBN']=='ì ìë
'43    is_teen=newdf[is_teen]44    adult_Male=is_adult['TEST_SEX']=='M'45    adult_Male=is_adult[adult_Male]46    adult_Female=is_adult['TEST_SEX']=='F'47    adult_Female=is_adult[adult_Female]48    teen_Male=is_teen['TEST_SEX']=='M'49    teen_Male=is_teen[teen_Male]50    teen_Female=is_teen['TEST_SEX']=='F'51    teen_Female=is_teen[teen_Female]52    # Male53    M19to24=((adult_Male['TEST_AGE']>=19) & (adult_Male['TEST_AGE']<=24))54    M19to24=adult_Male[M19to24]55    M25to29=((adult_Male['TEST_AGE']>=25) & (adult_Male['TEST_AGE']<=29))56    M25to29=adult_Male[M25to29]57    M30to34=((adult_Male['TEST_AGE']>=30) & (adult_Male['TEST_AGE']<=34))58    M30to34=adult_Male[M30to34]59    M35to39=((adult_Male['TEST_AGE']>=35) & (adult_Male['TEST_AGE']<=39))60    M35to39=adult_Male[M35to39]61    M40to44=((adult_Male['TEST_AGE']>=40) & (adult_Male['TEST_AGE']<=44))62    M40to44=adult_Male[M40to44]63    M45to49=((adult_Male['TEST_AGE']>=45) & (adult_Male['TEST_AGE']<=49))64    M45to49=adult_Male[M45to49]65    M50to54=((adult_Male['TEST_AGE']>=50) & (adult_Male['TEST_AGE']<=54))66    M50to54=adult_Male[M50to54]67    M55to59=((adult_Male['TEST_AGE']>=55) & (adult_Male['TEST_AGE']<=59))68    M55to59=adult_Male[M55to59]69    M60to64=((adult_Male['TEST_AGE']>=60) & (adult_Male['TEST_AGE']<=64))70    M60to64=adult_Male[M60to64]71    M65to69=((adult_Male['TEST_AGE']>=65) & (adult_Male['TEST_AGE']<=69))72    M65to69=adult_Male[M65to69]73    M70to74=((adult_Male['TEST_AGE']>=70) & (adult_Male['TEST_AGE']<=74))74    M70to74=adult_Male[M70to74]75    M75to79=((adult_Male['TEST_AGE']>=75) & (adult_Male['TEST_AGE']<=79))76    M75to79=adult_Male[M75to79]77    M80to84=((adult_Male['TEST_AGE']>=80) & (adult_Male['TEST_AGE']<=84))78    M80to84=adult_Male[M80to84]79    M85=adult_Male['TEST_AGE']>=8580    M85=adult_Male[M85]81    # Female82    F19to24=((adult_Female['TEST_AGE']>=19) & (adult_Female['TEST_AGE']<=24))83    F19to24=adult_Female[F19to24]84    F25to29=((adult_Female['TEST_AGE']>=25) & (adult_Female['TEST_AGE']<=29))85    F25to29=adult_Female[F25to29]86    F30to34=((adult_Female['TEST_AGE']>=30) & (adult_Female['TEST_AGE']<=34))87    F30to34=adult_Female[F30to34]88    F35to39=((adult_Female['TEST_AGE']>=35) & (adult_Female['TEST_AGE']<=39))89    F35to39=adult_Female[F35to39]90    F40to44=((adult_Female['TEST_AGE']>=40) & (adult_Female['TEST_AGE']<=44))91    F40to44=adult_Female[F40to44]92    F45to49=((adult_Female['TEST_AGE']>=45) & (adult_Female['TEST_AGE']<=49))93    F45to49=adult_Female[F45to49]94    F50to54=((adult_Female['TEST_AGE']>=50) & (adult_Female['TEST_AGE']<=54))95    F50to54=adult_Female[F50to54]96    F55to59=((adult_Female['TEST_AGE']>=55) & (adult_Female['TEST_AGE']<=59))97    F55to59=adult_Female[F55to59]98    F60to64=((adult_Female['TEST_AGE']>=60) & (adult_Female['TEST_AGE']<=64))99    F60to64=adult_Female[F60to64]100    F65to69=((adult_Female['TEST_AGE']>=65) & (adult_Female['TEST_AGE']<=69))101    F65to69=adult_Female[F65to69]102    F70to74=((adult_Female['TEST_AGE']>=70) & (adult_Female['TEST_AGE']<=74))103    F70to74=adult_Female[F70to74]104    F75to79=((adult_Female['TEST_AGE']>=75) & (adult_Female['TEST_AGE']<=79))105    F75to79=adult_Female[F75to79]106    F80to84=((adult_Female['TEST_AGE']>=80) & (adult_Female['TEST_AGE']<=84))107    F80to84=adult_Female[F80to84]108    F85=adult_Female['TEST_AGE']>=85109    F85=adult_Female[F85]110    result = get_all_average(M19to24, M25to29, M30to34, M35to39, M40to44, M45to49, M50to54, M55to59, M60to64, F19to24, F25to29, F30to34, F35to39, F40to44, F45to49, F50to54, F55to59, F60to64)111    return result112def get_each_item(item, data):113    gold=int(data.shape[0]*0.3)114    gold_boundary = int(data.shape[0]*0.34)115    silver=int(data.shape[0]*0.5)116    silver_boundary = int(data.shape[0]*0.55)117    bronze=int(data.shape[0]*0.7)118    bronze_boundary = int(data.shape[0]*0.335)119    attend_boundary = int(data.shape[0]*0.72)120    121    item_all = []122    #gold123    item_all.append(int(data[item].sort_values(ascending=False)[0:gold].max()))124    item_all.append(int(data[item].sort_values(ascending=False)[0:gold].mean()))125    item_all.append(int(data[item].sort_values(ascending=False)[0:gold].min()))126    #silver127    item_all.append(int(data[item].sort_values(ascending=False)[gold_boundary:silver].max()))128    item_all.append(int(data[item].sort_values(ascending=False)[gold_boundary:silver].mean()))129    item_all.append(int(data[item].sort_values(ascending=False)[gold_boundary:silver].min()))130    #bronze131    item_all.append(int(data[item].sort_values(ascending=False)[silver_boundary:bronze].max()))132    item_all.append(int(data[item].sort_values(ascending=False)[silver_boundary:bronze].mean()))133    item_all.append(int(data[item].sort_values(ascending=False)[silver_boundary:bronze].min()))134    #attend135    item_all.append(int(data[item].sort_values(ascending=False)[attend_boundary:].max()))136    item_all.append(int(data[item].sort_values(ascending=False)[attend_boundary:].mean()))137    item_all.append(int(data[item].sort_values(ascending=False)[attend_boundary:].min()))   138    if item_all[3] == item_all[2]:139        item_all[3] -= 1140    if item_all[6] == item_all[5]:141        item_all[6] -= 1142    if item_all[9] == item_all[8]:143        item_all[9] -= 1144    return item_all145#                 M19TO24, 0, 19, 24146def get_each_rank(data, gender, a1, a2):147    result = {"one_gold_top" : -1, "one_gold_avg" : -1, "one_gold_low" : -1, "one_silver_top" : -1, "one_silver_avg" : -1, "one_silver_low" : -1, "one_bronze_top" : -1, "one_bronze_avg" : -1, "one_bronze_low" : -1, "one_attend_top" : -1, "one_attend_avg" : -1, "one_attend_low" : -1,148    "two_gold_top" : -1, "two_gold_avg" : -1, "two_gold_low" : -1, "two_silver_top" : -1, "two_silver_avg" : -1, "two_silver_low" : -1, "two_bronze_top" : -1, "two_bronze_avg" : -1, "two_bronze_low" : -1, "two_attend_top" : -1, "two_attend_avg" : -1, "two_attend_low" : -1,149    "three_gold_top" : -1, "three_gold_avg" : -1, "three_gold_low" : -1, "three_silver_top" : -1, "three_silver_avg" : -1, "three_silver_low" : -1, "three_bronze_top" : -1, "three_bronze_avg" : -1, "three_bronze_low" : -1, "three_attend_top" : -1, "three_attend_avg" : -1, "three_attend_low" : -1,150    "four_gold_top" : -1, "four_gold_avg" : -1, "four_gold_low" : -1, "four_silver_top" : -1, "four_silver_avg" : -1, "four_silver_low" : -1, "four_bronze_top" : -1, "four_bronze_avg" : -1, "four_bronze_low" : -1, "four_attend_top" : -1, "four_attend_avg" : -1, "four_attend_low" : -1,151    "five_gold_top" : -1, "five_gold_avg" : -1, "five_gold_low" : -1, "five_silver_top" : -1, "five_silver_avg" : -1, "five_silver_low" : -1, "five_bronze_top" : -1, "five_bronze_avg" : -1, "five_bronze_low" : -1, "five_attend_top" : -1, "five_attend_avg" : -1, "five_attend_low" : -1,}152    each_rank = []153    each_rank.append(get_each_item("ITEM_F012", data))154    each_rank.append(get_each_item("ITEM_F019", data))155    each_rank.append(get_each_item("ITEM_F020", data))156    each_rank.append(get_each_item("ITEM_F021", data))157    each_rank.append(get_each_item("ITEM_F022", data))158    i = 0159    j = 0160    for key, value in result.items():161        result[key] = each_rank[i][j]162        j += 1163        if j == 12:164            i += 1165            if i == 5:166                break167            j = 0168    for key, value in result.items():169        if value < 0:170            result[key] = 0171    result['gender'] = gender172    result['a1'] = a1173    result['a2'] = a2174    return result175    176def get_rank():177    df = pd.read_csv("체력측ì _í목ë³_측ì _ë°ì´í°.csv", encoding='utf-8')178    newdf=df[['AGE_GBN', 'TEST_AGE', 'CERT_GBN', 'TEST_SEX', 'ITEM_F001', 'ITEM_F002', 'ITEM_F012', 'ITEM_F019', 'ITEM_F020', 'ITEM_F021', 'ITEM_F022']]179    newdf=newdf.fillna(newdf.mean())180    is_adult=newdf['AGE_GBN']=='ì±ì¸'181    is_adult=newdf[is_adult]182    is_teen=newdf['AGE_GBN']=='ì ìë
'183    is_teen=newdf[is_teen]184    adult_Male=is_adult['TEST_SEX']=='M'185    adult_Male=is_adult[adult_Male]186    adult_Female=is_adult['TEST_SEX']=='F'187    adult_Female=is_adult[adult_Female]188    teen_Male=is_teen['TEST_SEX']=='M'189    teen_Male=is_teen[teen_Male]190    teen_Female=is_teen['TEST_SEX']=='F'191    teen_Female=is_teen[teen_Female]192    # Male193    M19to24=((adult_Male['TEST_AGE']>=19) & (adult_Male['TEST_AGE']<=24))194    M19to24=adult_Male[M19to24]195    M25to29=((adult_Male['TEST_AGE']>=25) & (adult_Male['TEST_AGE']<=29))196    M25to29=adult_Male[M25to29]197    M30to34=((adult_Male['TEST_AGE']>=30) & (adult_Male['TEST_AGE']<=34))198    M30to34=adult_Male[M30to34]199    M35to39=((adult_Male['TEST_AGE']>=35) & (adult_Male['TEST_AGE']<=39))200    M35to39=adult_Male[M35to39]201    M40to44=((adult_Male['TEST_AGE']>=40) & (adult_Male['TEST_AGE']<=44))202    M40to44=adult_Male[M40to44]203    M45to49=((adult_Male['TEST_AGE']>=45) & (adult_Male['TEST_AGE']<=49))204    M45to49=adult_Male[M45to49]205    M50to54=((adult_Male['TEST_AGE']>=50) & (adult_Male['TEST_AGE']<=54))206    M50to54=adult_Male[M50to54]207    M55to59=((adult_Male['TEST_AGE']>=55) & (adult_Male['TEST_AGE']<=59))208    M55to59=adult_Male[M55to59]209    M60to64=((adult_Male['TEST_AGE']>=60) & (adult_Male['TEST_AGE']<=64))210    M60to64=adult_Male[M60to64]211    M65to69=((adult_Male['TEST_AGE']>=65) & (adult_Male['TEST_AGE']<=69))212    M65to69=adult_Male[M65to69]213    M70to74=((adult_Male['TEST_AGE']>=70) & (adult_Male['TEST_AGE']<=74))214    M70to74=adult_Male[M70to74]215    M75to79=((adult_Male['TEST_AGE']>=75) & (adult_Male['TEST_AGE']<=79))216    M75to79=adult_Male[M75to79]217    M80to84=((adult_Male['TEST_AGE']>=80) & (adult_Male['TEST_AGE']<=84))218    M80to84=adult_Male[M80to84]219    M85=adult_Male['TEST_AGE']>=85220    M85=adult_Male[M85]221    # Female222    F19to24=((adult_Female['TEST_AGE']>=19) & (adult_Female['TEST_AGE']<=24))223    F19to24=adult_Female[F19to24]224    F25to29=((adult_Female['TEST_AGE']>=25) & (adult_Female['TEST_AGE']<=29))225    F25to29=adult_Female[F25to29]226    F30to34=((adult_Female['TEST_AGE']>=30) & (adult_Female['TEST_AGE']<=34))227    F30to34=adult_Female[F30to34]228    F35to39=((adult_Female['TEST_AGE']>=35) & (adult_Female['TEST_AGE']<=39))229    F35to39=adult_Female[F35to39]230    F40to44=((adult_Female['TEST_AGE']>=40) & (adult_Female['TEST_AGE']<=44))231    F40to44=adult_Female[F40to44]232    F45to49=((adult_Female['TEST_AGE']>=45) & (adult_Female['TEST_AGE']<=49))233    F45to49=adult_Female[F45to49]234    F50to54=((adult_Female['TEST_AGE']>=50) & (adult_Female['TEST_AGE']<=54))235    F50to54=adult_Female[F50to54]236    F55to59=((adult_Female['TEST_AGE']>=55) & (adult_Female['TEST_AGE']<=59))237    F55to59=adult_Female[F55to59]238    F60to64=((adult_Female['TEST_AGE']>=60) & (adult_Female['TEST_AGE']<=64))239    F60to64=adult_Female[F60to64]240    F65to69=((adult_Female['TEST_AGE']>=65) & (adult_Female['TEST_AGE']<=69))241    F65to69=adult_Female[F65to69]242    F70to74=((adult_Female['TEST_AGE']>=70) & (adult_Female['TEST_AGE']<=74))243    F70to74=adult_Female[F70to74]244    F75to79=((adult_Female['TEST_AGE']>=75) & (adult_Female['TEST_AGE']<=79))245    F75to79=adult_Female[F75to79]246    F80to84=((adult_Female['TEST_AGE']>=80) & (adult_Female['TEST_AGE']<=84))247    F80to84=adult_Female[F80to84]248    F85=adult_Female['TEST_AGE']>=85249    F85=adult_Female[F85]250    result = []251    # Male252    result.append(get_each_rank(M19to24, 0, 19, 24))253    result.append(get_each_rank(M25to29, 0, 25, 29))254    result.append(get_each_rank(M30to34, 0, 30, 34))255    result.append(get_each_rank(M35to39, 0, 35, 39))256    result.append(get_each_rank(M40to44, 0, 40, 44))257    result.append(get_each_rank(M45to49, 0, 45, 49))258    result.append(get_each_rank(M50to54, 0, 50, 54))259    result.append(get_each_rank(M55to59, 0, 55, 59))260    result.append(get_each_rank(M60to64, 0, 60, 64))261    # Female262    result.append(get_each_rank(F19to24, 1, 19, 24))263    result.append(get_each_rank(F25to29, 1, 25, 29))264    result.append(get_each_rank(F30to34, 1, 30, 34))265    result.append(get_each_rank(F35to39, 1, 35, 39))266    result.append(get_each_rank(F40to44, 1, 40, 44))267    result.append(get_each_rank(F45to49, 1, 45, 49))268    result.append(get_each_rank(F50to54, 1, 50, 54))269    result.append(get_each_rank(F55to59, 1, 55, 59))270    result.append(get_each_rank(F60to64, 1, 60, 64))...app.py
Source:app.py  
1from flask import Flask, render_template, session, redirect, url_for, session2from flask_wtf import FlaskForm3from wtforms import TextField,SubmitField4from wtforms.validators import NumberRange5import numpy as np  6import pandas as pd7from tensorflow.keras.models import load_model8import joblib9app = Flask(__name__)10# Configure a secret SECRET_KEY 11# We will later learn much better ways to do this!!12app.config['SECRET_KEY'] = 'someRandomKey'13# Loading the model and scaler14youth_model = load_model("model/youth_model.h5")15adult_model = load_model("model/adult_model.h5")16elder_model = load_model("model/elder_model.h5")17youth_scaler = joblib.load("model/youth_scaler.pkl")18adult_scaler = joblib.load("model/adult_scaler.pkl")19elder_scaler = joblib.load("model/elder_scaler.pkl")20youth_group =pd.read_pickle("model/youth_group.pkl")21adult_group =pd.read_pickle("model/adult_group.pkl")22elder_group =pd.read_pickle("model/elder_group.pkl")23# Now create a WTForm Class24class input_youth(FlaskForm):25    test_age = TextField('ì°ë ¹')26    test_sex = TextField('ì±ë³')27    height = TextField('ì ì¥')28    weight = TextField('몸무ê²')29    core_cm = TextField('í리ëë ')30    run20 = TextField('20mìë³µì¤ëë¬ë¦¬ê¸°')31    situp = TextField('ì몸ë§ìì¬ë¦¬ê¸°')32    flex = TextField('ììì몸ìì¼ë¡êµ½í기')33    submit = SubmitField('ë¶ìí기')34class input_adult(FlaskForm):35    test_age = TextField('ì°ë ¹')36    test_sex = TextField('ì±ë³')37    height = TextField('ì ì¥')38    weight = TextField('몸무ê²')39    core_cm = TextField('í리ëë ')40    run20 = TextField('20mìë³µì¤ëë¬ë¦¬ê¸°')41    situp = TextField('êµì°¨ì몸ì¼ì¼í¤ê¸°')42    flex = TextField('ììì몸ìì¼ë¡êµ½í기')43    submit = SubmitField('ë¶ìí기')44class input_elder(FlaskForm):45    test_age = TextField('ì°ë ¹')46    test_sex = TextField('ì±ë³')47    height = TextField('ì ì¥')48    weight = TextField('몸무ê²')49    core_cm = TextField('í리ëë ')50    walk2m = TextField('2ë¶ì ì리걷기')51    chairup = TextField('ììììë¤ì¼ì´ì기')52    flex = TextField('ììì몸ìì¼ë¡êµ½í기')53    submit = SubmitField('ë¶ìí기')54class typeForm(FlaskForm):55    model_type = TextField('model_type')56    submit = SubmitField('ë¶ìí기')57# ë©ì¸ íì´ì§58@app.route('/', methods=['GET', 'POST'])59def mainp():60    # Create instance of the form.61    form = typeForm()62    63    # If the form is valid on submission64    if form.validate_on_submit():65    # Grab the data from the input on the form.66        session['model_type'] = form.model_type.data67        return redirect(url_for("index"))68    return render_template('home.html', form=form)69# ì측 íì´ì§70@app.route('/index', methods=['GET', 'POST'])71def index():72    # Create instance of the form.73    model_type = str(session['model_type'])74    if model_type == 'youth':75        form = input_youth()76        # If the form is valid on submission77        if form.validate_on_submit():78            session['test_age'] = form.test_age.data79            age = float(form.test_age.data)80            if age <  15:81                session['group'] = 'A'82            elif age < 17:83                session['group'] = 'B'84            else : session['group'] = 'C'85            86            session['test_sex'] = form.test_sex.data87            session['height'] = form.height.data88            session['weight'] = form.weight.data89            session['core_cm'] = form.core_cm.data90            session['run20'] = form.run20.data91            session['situp'] = form.situp.data92            session['flex'] = form.flex.data93            session['model_type'] = 'youth'94            return redirect(url_for("prediction"))95        return render_template('youth_main.html', form=form)96    97    elif model_type == 'elder':98        form = input_elder()99        if form.validate_on_submit():100            session['test_age'] = form.test_age.data101            age = float(form.test_age.data)102            if age < 70:103                session['group'] = 'A'104            elif age < 80:105                session['group'] = 'B'106            else : session['group'] = 'C'107            session['test_sex'] = form.test_sex.data108            session['height'] = form.height.data109            session['weight'] = form.weight.data110            session['core_cm'] = form.core_cm.data111            session['walk2m'] = form.walk2m.data112            session['chairup'] = form.chairup.data113            session['flex'] = form.flex.data114            session['model_type'] = 'elder'115            return redirect(url_for("prediction"))116        return render_template('elder_main.html', form=form)117    else :118        form = input_adult()119        if form.validate_on_submit():120            session['test_age'] = form.test_age.data121            age = float(form.test_age.data)122            if age < 30:123                session['group'] = 'A'124            elif age < 40:125                session['group'] = 'B'126            elif age < 50:127                session['group'] = 'C'128            else : session['group'] = 'D'129            session['test_sex'] = form.test_sex.data130            session['height'] = form.height.data131            session['weight'] = form.weight.data132            session['core_cm'] = form.core_cm.data133            session['run20'] = form.run20.data134            session['situp'] = form.situp.data135            session['flex'] = form.flex.data136            session['model_type'] = 'adult'137            return redirect(url_for("prediction"))138        return render_template('main.html', form=form)139@app.route('/prediction')140def prediction():141    model_type = session['model_type']142    if model_type == 'youth' :143            144        content = {}145        content['test_age'] = float(session['test_age'])146        content['test_sex'] = float(session['test_sex'])147        content['height'] = float(session['height'])148        content['weight'] = float(session['weight'])149        content['core_cm'] = float(session['core_cm'])150        content['run20'] = float(session['run20'])151        content['situp'] = float(session['situp'])152        content['flex'] = float(session['flex'])153        results = return_prediction(mode = 'youth', model=youth_model,scaler=youth_scaler,sample_json=content)154        155        # pivot data select156        group_label = str(session['group'])157        pivot_select = pd.DataFrame(youth_group.loc[group_label]).T158        if float(session['test_sex']) > 0.5:159            pivot_col = [pivot_select.columns[1][0],pivot_select.columns[3][0],pivot_select.columns[5][0]]160            pivot_data = [pivot_select.iloc[0,1],pivot_select.iloc[0,3],pivot_select.iloc[0,5]]161        else :162            pivot_col = [pivot_select.columns[0][0],pivot_select.columns[2][0],pivot_select.columns[4][0]]163            pivot_data = [pivot_select.iloc[0,0],pivot_select.iloc[0,2],pivot_select.iloc[0,4]]164        return render_template('youth_prediction.html',results=results, pivot_col = pivot_col, pivot_data = pivot_data)165    elif model_type == 'elder':166        content = {}167        content['test_age'] = float(session['test_age'])168        content['test_sex'] = float(session['test_sex'])169        content['height'] = float(session['height'])170        content['weight'] = float(session['weight'])171        content['core_cm'] = float(session['core_cm'])172        content['walk2m'] = float(session['walk2m'])173        content['chairup'] = float(session['chairup'])174        content['flex'] = float(session['flex'])175        results = return_prediction(mode = 'elder', model=elder_model,scaler=elder_scaler,sample_json=content)176        177        # pivot data select178        group_label = str(session['group'])179        pivot_select = pd.DataFrame(elder_group.loc[group_label]).T180        if float(session['test_sex']) > 0.5 :181            pivot_col = [pivot_select.columns[1][0],pivot_select.columns[3][0],pivot_select.columns[5][0]]182            pivot_data = [pivot_select.iloc[0,1],pivot_select.iloc[0,3],pivot_select.iloc[0,5]]183        else :184            pivot_col = [pivot_select.columns[0][0],pivot_select.columns[2][0],pivot_select.columns[4][0]]185            pivot_data = [pivot_select.iloc[0,0],pivot_select.iloc[0,2],pivot_select.iloc[0,4]]186        return render_template('elder_prediction.html',results=results, pivot_col = pivot_col, pivot_data = pivot_data)187    else:188        content = {}189        content['test_age'] = float(session['test_age'])190        content['test_sex'] = float(session['test_sex'])191        content['height'] = float(session['height'])192        content['weight'] = float(session['weight'])193        content['core_cm'] = float(session['core_cm'])194        content['run20'] = float(session['run20'])195        content['situp'] = float(session['situp'])196        content['flex'] = float(session['flex'])197        results = return_prediction(mode = 'adult', model=adult_model,scaler=adult_scaler,sample_json=content)198        199        # pivot data select200        group_label = str(session['group'])201        pivot_select = pd.DataFrame(adult_group.loc[group_label]).T202        if float(session['test_sex']) >0.5 :203            pivot_col = [pivot_select.columns[1][0],pivot_select.columns[3][0],pivot_select.columns[5][0]]204            pivot_data = [pivot_select.iloc[0,1],pivot_select.iloc[0,3],pivot_select.iloc[0,5]]205        else :206            pivot_col = [pivot_select.columns[0][0],pivot_select.columns[2][0],pivot_select.columns[4][0]]207            pivot_data = [pivot_select.iloc[0,0],pivot_select.iloc[0,2],pivot_select.iloc[0,4]]208        return render_template('prediction.html',results=results, pivot_col = pivot_col, pivot_data = pivot_data)209    210def return_prediction(mode, model,scaler,sample_json):211    if mode == 'youth':212    213        test_age = sample_json['test_age']214        test_sex = sample_json['test_sex']215        height = sample_json['height']216        weight = sample_json['weight']217        core_cm = sample_json['core_cm']218        run20 = sample_json['run20']219        situp = sample_json['situp']220        flex = sample_json['flex']221        test_data = [[test_age,test_sex,height,weight,core_cm,run20,situp,flex]]222    elif mode == 'elder':223    224        test_age = sample_json['test_age']225        test_sex = sample_json['test_sex']226        height = sample_json['height']227        weight = sample_json['weight']228        core_cm = sample_json['core_cm']229        walk2m = sample_json['walk2m']230        chairup = sample_json['chairup']231        flex = sample_json['flex']232        test_data = [[test_age,test_sex,height,weight,core_cm,walk2m,chairup,flex]]233    else:234    235        test_age = sample_json['test_age']236        test_sex = sample_json['test_sex']237        height = sample_json['height']238        weight = sample_json['weight']239        core_cm = sample_json['core_cm']240        run20 = sample_json['run20']241        situp = sample_json['situp']242        flex = sample_json['flex']243        test_data = [[test_age,test_sex,height,weight,core_cm,run20,situp,flex]]244    test_data_scaled = scaler.transform(test_data)245    predict = model.predict(test_data_scaled)246    return str(round(predict[0][0],3))247if __name__ == '__main__':...loops.py
Source:loops.py  
1# Let's start with some variables to work with.2age = 123test_age = 14# Much like with an if statement, a while statement checks whether a value is true.5# Then, if it is, it does everything under it, in the indented block,6# then returns to the top and checks the condition again.7while test_age < age:8    print("Age is at least:")9    print(test_age)10    test_age = test_age + 111# The last line above is very important in a while loop. If you don't change the condition12# that's being checked, somewhere in the loop, it will evaluate the same way every time.13# This means that your loop will run forever!14# There are a couple ways to clean up the code above. First, we can replace the unwieldy15# increment line (adding one) with the shortcut +=. Next, we can shrink down the code16# to a single print statement by adding a formatted string. To do this, we do three things:17# First, insert the letter 'f' prior to the string itself.18# Next, add curly braces, {}, wherever you want a variable's value to be pasted.19# Finally, add the name of the variable to paste inside the curly braces.20while test_age <= age:21    print(f"Found the age! {test_age}")22    test_age += 123print("test with while loop completed")24# Next we can look at for loops. These loops behave very similarly to while loops,25# But they do some of the bookkeeping for us. Instead of having to manually change the 26# condition being tested each time, a for loop will do it for us.27# The easiest way to do this is with range(). This function will tell the for loop to28# iterate through a loop five times, each time changing the value of the variable in the 29# for _____ statement. In the case below, that's test_age.30for test_age in range(20):31    if test_age == age:32        print(f"Found the age! {test_age}")33        print(test_age)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
