Best Python code snippet using localstack_python
main.py
Source:main.py  
...13    """14    runs a separation on specific two images15    :return:16    """17    # im1 = prepare_image('data/kate.png')18    # im2 = prepare_image('data/f16.png')19    # mixed = mix_images(im1, im2)20    21    # im1 = prepare_image('data/bear.jpg')22    # im2 = prepare_image('data/players.jpg')23    # mixed = prepare_image("data/separation/difference.bmp")24    # mixed, kernel, ratio = realistic_mix_images(im1, im2)25    # mixed = prepare_image('data/separation/postcard/ae-5-m-11.png')26    # mixed = prepare_image('data/separation/solid/m.jpg')27    # im1 = prepare_image('data/separation/g.jpg')28    # ----29    # im2 = prepare_image('data/separation/dorm1_input.png')30    #31    # s = Separation("dorm", im2, num_iter=4000)32    # s.optimize()33    # s.finalize()34    #35    # im2 = prepare_image('data/separation/dusk2_input.png')36    # im2 = np_imresize(im2, 0.5)37    #38    #39    # s = Separation("dusk", im2, num_iter=4000)40    # s.optimize()41    # s.finalize()42    im2 = prepare_image('data/separation/bus_station_input.png')43    s = Separation("bus_station", im2, num_iter=4000)44    s.optimize()45    s.finalize()46    im2 = prepare_image('data/separation/night3_input.png')47    im2 = np_imresize(im2, 0.5)48    s = Separation("night", im2, num_iter=4000)49    s.optimize()50    s.finalize()51    im2 = prepare_image('data/separation/dusk_input.png')52    s = Separation("dusj1", im2, num_iter=4000)53    s.optimize()54    s.finalize()55def experiment_example():56    im1 = prepare_image('data/experiments/texture3.jpg')57    im2 = prepare_image('data/experiments/texture1.jpg')58    mixed = (im1 + im2) / 259    # mixed = prepare_gray_image('data/experiments/97033.jpg')60    # mixed = prepare_gray_image('data/separation/c.jpg')61    s = Separation("mixed", mixed, num_iter=8000)62    s.optimize()63    s.finalize()64def ambiguity_experiment_example():65    im1 = prepare_image('data/experiments/texture3.jpg')66    im2 = prepare_image('data/experiments/texture1.jpg')67    im3 = prepare_image('data/experiments/texture4.jpg')68    im4 = prepare_image('data/experiments/texture6.jpg')69    im1_new = im170    im1_new[:,:, :im1.shape[2]//2] = im4[:,:, :im1.shape[2]//2]71    im2_new = im272    # im4 = np_imresize(im4, output_shape=im2.shape)73    im2_new[:, :, :im2.shape[2] // 2] = im3[:,:, :im2.shape[2] // 2]74    save_image("input1", im1_new)75    save_image("input2", im2_new)76    mixed =(im1_new + im2_new) / 277    save_image("mixed", mixed)78    exit()79    for i in range(10):80        # mixed = prepare_gray_image('data/experiments/97033.jpg')81        # mixed = prepare_gray_image('data/separation/c.jpg')82        s = Separation("mixed_{}".format(i), mixed, num_iter=8000)83        s.optimize()84        s.finalize()85def segment_example():86    # for i in range(1, 10):87    im = prepare_image('data/segmentation/zebra.png')88    fg = prepare_image('data/segmentation/zebra_fg - Copy.png')89    bg = prepare_image('data/segmentation/zebra_bg - Copy.png')90    # fg = prepare_image('data/segmentation/zebra_5_mask.bmp')91    # bg = 1 - prepare_image('data/segmentation/zebra_5_mask.bmp')92    # fg = prepare_image('data/segmentation/zebra_saliency.bmp')93    # fg[fg > 0.9] = 194    # fg[fg <= 0.9] = 095    # bg = 1 - prepare_image('data/segmentation/zebra_saliency.bmp')96    # bg[bg > 0.9] = 197    # bg[bg <= 0.9] = 098    s = Segmentation("zebra_{}".format(1), im, bg_hint=bg, fg_hint=fg)99    s.optimize()100    s.finalize()101    # im = prepare_image('data/segmentation/sheep.jpg')102    # fg = prepare_image('data/segmentation/sheep_fg.png')103    # bg = prepare_image('data/segmentation/sheep_bg.png')104    #105    # s = Segmentation("sheep", im, bg_hint=bg, fg_hint=fg)106    # s.optimize()107    # s.finalize()108    # im = prepare_image('data/segmentation/yaks.jpg')109    # fg = prepare_image('data/segmentation/yaks_fg.png')110    # bg = prepare_image('data/segmentation/yaks_bg.png')111    #112    # s = Segmentation("yaks", im, step_num=2, bg_hint=bg, fg_hint=fg)113    # s.optimize()114    # s.finalize()115    #116    # im = prepare_image('data/segmentation/pagoda.jpg')117    # fg = prepare_image('data/segmentation/pagoda_fg.png')118    # bg = prepare_image('data/segmentation/pagoda_bg.png')119    # s = Segmentation("pagoda", im, step_num=2, bg_hint=bg, fg_hint=fg)120    # s.optimize()121    # s.finalize()122    # im = prepare_image('data/elephant.jpg')123    # im = prepare_image('data/segmentation/pagoda.jpg')124    # im = prepare_image('data/segmentation/361010.jpg')125    # im = prepare_image('data/segmentation/image014.jpg')126    # im = prepare_image('data/segmentation/demo.png')127    # im = prepare_image('data/segmentation/image005.png')128    # im = prepare_image('data/segmentation/image015.png')129    # im = prepare_image('data/segmentation/img_1029.jpg')130    # im = np.clip(imresize(im.transpose(1, 2, 0), 0.5).transpose(2, 0, 1), 0, 1)131    # bg = np.clip(imresize(bg.transpose(1, 2, 0), 0.5).transpose(2, 0, 1), 0, 1)132    # fg = np.clip(imresize(fg.transpose(1, 2, 0), 0.5).transpose(2, 0, 1), 0, 1)133    # segment(im)134    # uneven_segment(im, show_every=500)135    # multiscale_segment(im)136    # uneven_multiscale_segment(im)137def dehazing_exmaple():138    # im = prepare_image('data/dehazing/forest.png')139    # im = prepare_image('data/dehazing/tiananmen.png')140    im = prepare_image('data/dehazing/cityscape.png')141    # im = prepare_image('data/dehazing/dubai.png')142    # im = prepare_image('data/dehazing/mountain.png')143    # im = prepare_image('data/dehazing/underwaterWaterTank.jpg')144    # dehaze(im, use_deep_channel_prior=True)145def watermark_example():146    # im = prepare_image('data/watermark/fotolia.jpg')147    # fg = prepare_image('data/watermark/fotolia_watermark.png')148    # remove_watermark("fotolia", im, fg)149    #150    # im = prepare_image('data/watermark/copyright.jpg')151    # fg = prepare_image('data/watermark/copyright_watermark.png')152    # remove_watermark("copyright", im, fg)153    #154    # im = prepare_image('data/watermark/small_portubation.jpg')155    # fg = prepare_image('data/watermark/small_portubation_watermark.png')156    # remove_watermark("small_portubation", im, fg)157    # im = prepare_image('data/watermark/cvpr1.jpg')158    # fg = prepare_image('data/watermark/cvpr1_watermark.png')159    # remove_watermark("cvpr1", im, fg)160    #161    # im = prepare_image('data/watermark/cvpr2.jpg')162    # fg = prepare_image('data/watermark/cvpr2_watermark.png')163    # remove_watermark("cvpr2", im, fg)164    # im = prepare_image('data/watermark/coco.jpg')165    # fg = prepare_image('data/watermark/coco_watermark.png')166    # remove_watermark("coco", im, fg)167    #168    # im = prepare_image('data/watermark/coco2.jpg')169    # fg = prepare_image('data/watermark/coco2_watermark.png')170    # remove_watermark("coco2", im, fg)171    # im = prepare_image('data/watermark/cvpr3.jpg')172    # fg = prepare_image('data/watermark/cvpr3_watermark.png')173    # remove_watermark("cvpr3", im, fg)174    # im = prepare_image('data/watermark/cvpr4.jpg')175    # fg = prepare_image('data/watermark/cvpr4_watermark.png')176    # remove_watermark("cvpr4", im, fg)177    # im = prepare_image('data/watermark/AdobeStock1.jpg')178    # fg = prepare_image('data/watermark/AdobeStock1_watermark.png')179    # remove_watermark("AdobeStock1", im, fg)180    # im = prepare_image('data/watermark/AdobeStock2.jpg')181    # fg = prepare_image('data/watermark/AdobeStock2_watermark.png')182    # remove_watermark("AdobeStock2", im, fg)183    # im = prepare_image('data/watermark/AdobeStock3.jpg')184    # fg = prepare_image('data/watermark/AdobeStock3_watermark.png')185    # remove_watermark("AdobeStock3", im, fg)186    # im = prepare_image('data/watermark/AdobeStock4.jpg')187    # fg = prepare_image('data/watermark/AdobeStock4_watermark.png')188    # remove_watermark("AdobeStock4", im, fg)189    im = prepare_image('data/watermark/AdobeStock5.jpg')190    fg = prepare_image('data/watermark/AdobeStock5_watermark.png')191    remove_watermark("AdobeStock5", im, fg)192def watermark2_example():193    im1 = prepare_image('data/watermark/fotolia1.jpg')194    im2 = prepare_image('data/watermark/fotolia2.jpg')195    fg = prepare_image('data/watermark/fotolia_many_watermark.png')196    results = []197    for i in range(7):198        # TODO: make it median199        s = TwoImagesWatermark("fotolia_example_{}".format(i), im1, im2, step_num=2, watermark_hint=fg)200        s.optimize()201        s.finalize()202def watermarks2_example_no_hint():203    # im1 = prepare_image('data/watermark/123RF_1.jpg')204    # im2 = prepare_image('data/watermark/123RF_2.jpg')205    # im3 = prepare_image('data/watermark/123RF_3.jpg')206    # im4 = prepare_image('data/watermark/123RF_4.jpg')207    # results = []208    # for i in range(7):209    #     # TODO: make it median210    #     s = ManyImagesWatermarkNoHint(["123rf_example_{}".format(i) for i in range(4)], [im1, im2, im3, im4])211    #     s.optimize()212    #     s.finalize()213    im1 = prepare_image('data/watermark/fotolia1.jpg')214    im2 = prepare_image('data/watermark/fotolia2.jpg')215    im3 = prepare_image('data/watermark/fotolia3.jpg')216    results = []217    for i in range(5):218        # TODO: make it median219        s = ManyImagesWatermarkNoHint(["fotolia_example_{}".format(i) for i in range(3)], [im1, im2, im3])220        s.optimize()221        results.append(s.best_result)222    # namedtuple("ManyImageWatermarkResult", ['cleans', 'mask', 'watermark', 'psnr'])223    obtained_watermark = median([result.mask * result.watermark for result in results])224    obtained_im1 = median([result.cleans[0] for result in results])225    obtained_im2 = median([result.cleans[1] for result in results])226    obtained_im3 = median([result.cleans[2] for result in results])227    # obtained_mask = median([result.mask for result in results])228    v = np.zeros_like(obtained_watermark)229    v[obtained_watermark < 0.03] = 1230    final_im1 = v * im1 + (1 - v) * obtained_im1231    final_im2 = v * im2 + (1 - v) * obtained_im2232    final_im3 = v * im3 + (1 - v) * obtained_im3233    save_image("fotolia1_final", final_im1)234    save_image("fotolia2_final", final_im2)235    save_image("fotolia3_final", final_im3)236    save_image("fotolia_final_watermark", obtained_watermark)237    # TODO: for watermark - zero everything under 0.03238def two_extending_experiment():239    im1 = prepare_image('data/kate.png')240    im2 = prepare_image('data/f16.png')241    t = SeparationExtendingExperiment("kate_f16", im1, im2, 2000, True)242    t.optimize()243    t.finalize()244def separate_image_video_example():245    # vid = prepare_video('data/separation/vid.avi')246    # vid = prepare_video('data/separation/half_horses.mp4')247    vid = prepare_video('data/separation/fountain_short.mp4')248    im = prepare_image('data/separation/d.jpg')249    im = np_imresize(im, output_shape=vid.shape[2:])250    mix = 0.5 * im + 0.5 * vid251    image_video_separation("tiger", mix)252    vid = prepare_video('data/separation/fountain_short.mp4')253    im = prepare_image('data/separation/f.jpg')254    im = np_imresize(im, output_shape=vid.shape[2:])255    mix = 0.5 * im + 0.5 * vid256    image_video_separation("misg", mix)257    vid = prepare_video('data/separation/horses_short.mp4')258    im = prepare_image('data/separation/g.jpg')259    im = np_imresize(im, output_shape=vid.shape[2:])260    mix = 0.5 * im + 0.5 * vid261    image_video_separation("cow", mix)262def separate_video_video_example():263    vid = prepare_video('data/separation/fountain_horses.mp4')264    s = VideoVideoSeparation("fountain_horses", vid)265    s.optimize()266    s.finalize()267def separate_alpha_video_example():268    vid = prepare_video('data/separation/vid.avi')269    image_video_separation_with_alpha("video_alpha", vid)270def separate_alpha_video_video_example():271    vid = prepare_video('data/separation/vid.avi')272    alpha_video_video_separation("video_alpha", vid)...stardict_images.py
Source:stardict_images.py  
1#!/usr/bin/env python2# -*- coding: utf-8 -*-3from gimpfu import *4import os5def prepare_image(image, visibleLayers, size, numColors = None):6  """prepare custom image7  image - image object to change8  size - size of the image in pixels9  visibleLayers - a list of layers that must be visible10  """11  for layer in image.layers:12    if layer.name in visibleLayers:13      layer.visible = True14    else:15      image.remove_layer(layer)16  gimp.pdb.gimp_image_merge_visible_layers(image, CLIP_TO_IMAGE)17  drawable=gimp.pdb.gimp_image_get_active_layer(image)18  gimp.pdb.gimp_layer_scale_full(drawable, size, size, False, INTERPOLATION_CUBIC)19  """20  image 670x670, all layers have the same dimensions21  after applying gimp_image_scale_full functions with size=32,22  image.width = 32, image.height = 3223  layer.width = 27, layer.height = 3124  gimp.pdb.gimp_image_scale_full(image, size, size, INTERPOLATION_CUBIC)25  """26  #print 'width = {0}, height = {1}'.format(drawable.width, drawable.height)27  #print 'width = {0}, height = {1}'.format(image.width, image.height)28  if numColors != None:29    gimp.pdb.gimp_image_convert_indexed(image, NO_DITHER, MAKE_PALETTE, numColors, False, False, "")30def save_image(image, dstFilePath):31  dirPath = os.path.dirname(dstFilePath)32  if not os.path.exists(dirPath):33    os.makedirs(dirPath)34  drawable=gimp.pdb.gimp_image_get_active_layer(image)35  gimp.pdb.gimp_file_save(image, drawable, dstFilePath, dstFilePath)36  gimp.delete(drawable)37  gimp.delete(image)38def create_icon(origImage, visibleLayers, props):39  """visibleLayers - a list of layers that must be visible40  props - tuple of image properties in format ((size, bpp), ...)41  where: 42    size - size of the icon in pixels,43    bpp - bits per pixel, None to leave by default44  return value - new image45  """46  iconImage = None47  i = 048  for prop in props:49    image = gimp.pdb.gimp_image_duplicate(origImage)50    prepare_image(image, visibleLayers, prop[0], prop[1])51    image.layers[0].name = 's{0}'.format(i)52    if iconImage == None:53      iconImage = image54    else:55      newLayer = gimp.pdb.gimp_layer_new_from_drawable(image.layers[0], iconImage)56      gimp.pdb.gimp_image_add_layer(iconImage, newLayer, -1)57      gimp.delete(image)58    i += 159      60  return iconImage61  62def stardict_images(srcFilePath, rootDir):63  if not rootDir:64    # srcFilePath = rootDir + "/pixmaps/stardict.xcf"65    if not srcFilePath.endswith("/pixmaps/stardict.xcf"):66      print 'Unable to automatically detect StarDict root directory. Specify non-blank root directory parameter.'67      return68    dstDirPath = os.path.dirname(srcFilePath)69    dstDirPath = os.path.dirname(dstDirPath)70  else:71    dstDirPath = rootDir72  """73  print 'srcFilePath = {0}'.format(srcFilePath)74  print 'rootDir = {0}'.format(rootDir)75  print 'dstDirPath = {0}'.format(dstDirPath)76  """77  dstStarDict_s128_FilePath=os.path.join(dstDirPath, "pixmaps/stardict_128.png")78  dstStarDict_s32_FilePath=os.path.join(dstDirPath, "pixmaps/stardict_32.png")79  dstStarDict_s16_FilePath=os.path.join(dstDirPath, "pixmaps/stardict_16.png")80  dstStarDict_FilePath=os.path.join(dstDirPath, "pixmaps/stardict.png")81  dstStarDictEditor_s128_FilePath=os.path.join(dstDirPath, "pixmaps/stardict-editor_128.png")82  dstStarDictEditor_s32_FilePath=os.path.join(dstDirPath, "pixmaps/stardict-editor_32.png")83  dstStarDictEditor_s16_FilePath=os.path.join(dstDirPath, "pixmaps/stardict-editor_16.png")84  dstStarDictIconFilePath=os.path.join(dstDirPath, "pixmaps/stardict.ico")85  dstStarDictEditorIconFilePath=os.path.join(dstDirPath, "pixmaps/stardict-editor.ico")86  dstStarDictUninstIconFilePath=os.path.join(dstDirPath, "pixmaps/stardict-uninst.ico")87  dstDockletNormalFilePath=os.path.join(dstDirPath, "src/pixmaps/docklet_normal.png")88  dstDockletScanFilePath=os.path.join(dstDirPath, "src/pixmaps/docklet_scan.png")89  dstDockletStopFilePath=os.path.join(dstDirPath, "src/pixmaps/docklet_stop.png")90  dstDockletGPENormalFilePath=os.path.join(dstDirPath, "src/pixmaps/docklet_gpe_normal.png")91  dstDockletGPEScanFilePath=os.path.join(dstDirPath, "src/pixmaps/docklet_gpe_scan.png")92  dstDockletGPEStopFilePath=os.path.join(dstDirPath, "src/pixmaps/docklet_gpe_stop.png")93  dstWordPickFilePath=os.path.join(dstDirPath, "src/win32/acrobat/win32/wordPick.bmp")94  95  origImage=gimp.pdb.gimp_file_load(srcFilePath, srcFilePath)96  97  image = gimp.pdb.gimp_image_duplicate(origImage)98  prepare_image(image, ("book1", "book2"), 128)99  save_image(image, dstStarDict_s128_FilePath)100  image = gimp.pdb.gimp_image_duplicate(origImage)101  prepare_image(image, ("book1", "book2"), 32)102  save_image(image, dstStarDict_s32_FilePath)103  image = gimp.pdb.gimp_image_duplicate(origImage)104  prepare_image(image, ("book1", "book2"), 16)105  save_image(image, dstStarDict_s16_FilePath)106  image = gimp.pdb.gimp_image_duplicate(origImage)107  prepare_image(image, ("book1", "book2"), 64)108  save_image(image, dstStarDict_FilePath)109  image = gimp.pdb.gimp_image_duplicate(origImage)110  prepare_image(image, ("book1", "book2", "edit"), 128)111  save_image(image, dstStarDictEditor_s128_FilePath)112  image = gimp.pdb.gimp_image_duplicate(origImage)113  prepare_image(image, ("book1", "book2", "edit"), 32)114  save_image(image, dstStarDictEditor_s32_FilePath)115  image = gimp.pdb.gimp_image_duplicate(origImage)116  prepare_image(image, ("book1", "book2", "edit"), 16)117  save_image(image, dstStarDictEditor_s16_FilePath)118  image = create_icon(origImage, ("book1", "book2"),119    ((16, None), (32, None), (48, None), (16, 256), (32, 256), (48, 256), (256, None))120    )121  save_image(image, dstStarDictIconFilePath)122    123  image = create_icon(origImage, ("book1", "book2", "edit"),124    ((16, None), (32, None), (48, None), (16, 256), (32, 256), (48, 256), (256, None))125    )126  save_image(image, dstStarDictEditorIconFilePath)127    128  image = create_icon(origImage, ("book1", "book2", "cross"),129    ((16, None), (32, None), (48, None), (16, 256), (32, 256), (48, 256), (256, None))130    )131  save_image(image, dstStarDictUninstIconFilePath)132    133  image = gimp.pdb.gimp_image_duplicate(origImage)134  prepare_image(image, ("book1", "book2"), 32)135  save_image(image, dstDockletNormalFilePath)136  image = gimp.pdb.gimp_image_duplicate(origImage)137  prepare_image(image, ("book1", "book2", "search"), 32)138  save_image(image, dstDockletScanFilePath)139  image = gimp.pdb.gimp_image_duplicate(origImage)140  prepare_image(image, ("book1", "book2", "stop"), 32)141  save_image(image, dstDockletStopFilePath)142  image = gimp.pdb.gimp_image_duplicate(origImage)143  prepare_image(image, ("book1", "book2"), 16)144  save_image(image, dstDockletGPENormalFilePath)145  image = gimp.pdb.gimp_image_duplicate(origImage)146  prepare_image(image, ("book1", "book2", "search"), 16)147  save_image(image, dstDockletGPEScanFilePath)148  image = gimp.pdb.gimp_image_duplicate(origImage)149  prepare_image(image, ("book1", "book2", "stop"), 16)150  save_image(image, dstDockletGPEStopFilePath)151  # See AVToolButtonNew function in PDF API Reference152  # Recommended icon size is 18x18, but it looks too small...153  image = gimp.pdb.gimp_image_duplicate(origImage)154  prepare_image(image, ("book1", "book2"), 22)155  gimp.set_background(192, 192, 192)156  gimp.pdb.gimp_layer_flatten(image.layers[0])157  save_image(image, dstWordPickFilePath)158register(159        "stardict_images",160        "Create images for StarDict",161        "Create images for StarDict",162        "StarDict team",163        "GPL",164        "Mar 2011",165        "<Toolbox>/Tools/stardict images",166        "",167        [168          (PF_FILE, "src_image", "Multilayer image used as source for all other images in StarDict, "...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
