Best Python code snippet using localstack_python
localstack.py
Source:localstack.py  
...182    from localstack import config183    assert config184    assert ext_config185    if format == "table":186        print_config_table()187    elif format == "plain":188        print_config_pairs()189    elif format == "dict":190        print_config_dict()191    elif format == "json":192        print_config_json()193    else:194        print_config_pairs()  # fall back to plain195def print_config_json():196    import json197    from localstack import config198    console.print(json.dumps(dict(config.collect_config_items())))199def print_config_pairs():200    from localstack import config201    for key, value in config.collect_config_items():202        console.print(f"{key}={value}")203def print_config_dict():204    from localstack import config205    console.print(dict(config.collect_config_items()))206def print_config_table():207    from rich.table import Table208    from localstack import config209    grid = Table(show_header=True)210    grid.add_column("Key")211    grid.add_column("Value")212    for key, value in config.collect_config_items():213        grid.add_row(key, str(value))214    console.print(grid)215@localstack.command(name="ssh", help="Obtain a shell in the running LocalStack container")216def cmd_ssh():217    from localstack import config218    from localstack.utils.docker_utils import DOCKER_CLIENT219    from localstack.utils.run import run220    if not DOCKER_CLIENT.is_container_running(config.MAIN_CONTAINER_NAME):...eval_hyperparameter_tuning.py
Source:eval_hyperparameter_tuning.py  
...44        print('%argmax: ' + str(np.argmax(results, axis=0)))45        print('%argmin: ' + str(np.argmin(results, axis=0)))46    sys.stdout = orig_stdout        47    return results[:,:n_val-1]48def print_config_table(path_trainings):49    '''50    Print a latex table of configurations to a .txt file51    '''52    header = ['Training', '$N_{Patches pp.}$', 'Patch Size', 'Overlap', 'Loss Weights(C:R)']53    54    # Create list of lists55    configs_used = []56    for i in range(len(path_trainings)):57        configs_used.append([])58        for j in range(len(header)):59            configs_used[i].append([])60    61    # Load data62    for idx, path in enumerate(path_trainings,0):63        with open(path + '/params.txt', 'r') as f:64            params = json.load(f)65        with open(path + '/config.txt', 'r') as f:66            config = json.load(f)67        configs_used[idx][0] = params['n_patches']68        configs_used[idx][1] = params['patch_size']69        configs_used[idx][2] = params['overlap']70        configs_used[idx][3] = config['loss_weights']71    72    # Print data 73    orig_stdout = sys.stdout74    with open('hyperparameter_table.txt', 'w') as f:75        sys.stdout = f76        for h in header:77            print(h, end='')78            if h != header[-1]:79                print(' & ', end='')80            else:81                print(' \\\\ \n\\hline')82#        for idx in range(len(configs_used)):83        for training_idx, line in enumerate(configs_used,0):84            print('H'+f'{training_idx:02}'+ ' & ', end='')85            for idx in range(len(header)):86                print(line[idx], end='')87                if idx != len(header) -1:88                    print(' & ', end='')89            if training_idx != len(configs_used)-1:90                print(' \\\\ \n', end='')             91    sys.stdout = orig_stdout            92    93if __name__ == '__main__':94    src_dir = '/home/s1283/no_backup/s1283/hyperparameter_tuning_01/'95    path_trainings = glob(os.path.join(src_dir, '*/'))96    path_trainings.sort()97    results = print_results_table(path_trainings)98    configs = print_config_table(path_trainings)99#%%100    # Create boxplots for hyperparameter training101    loss_class = results[:,0]102    mse = results[:,-1]103    metrics_class = results[:,1:-1]104    fig, ax1 = plt.subplots(figsize=(5,5))105    bp1 = ax1.boxplot(100*metrics_class,showmeans=True)106    ax1.set_ylim([0,100])107    ax1.set_ylabel('Percentage')108    109    ax1.set_xticklabels(['Accuracy', 'Precision', 'Sensitivity', 'Specificity'])110    ax1.set_title('Classification Metrics')111    plt.savefig('classification_boxplots.png', bbox_inches ='tight')112    fig, ax2 = plt.subplots(figsize=(2,5))...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
