Best Python code snippet using locust
ml_backend.py
Source:ml_backend.py  
...23        'Pts5', 'OR1', 'OR2', 'OR3', 'OR4', 'OR5', 'DR1', 'DR2', 'DR3',24        'DR4', 'DR5', 'FG2Pct', 'FG3Pct', 'FTPct', 'BlockPct',25        'OppFG2Pct', 'OppFG3Pct', 'OppFTPct', 'OppBlockPct', 'F3GRate',26        'OppF3GRate', 'ARate', 'OppARate', 'StlRate', 'OppStlRate']27def get_random_number():28    """generate random number between -1 and 1."""29    rand = random.random()30    rand = (rand * 2) - 131    return rand32def prepare_data(year1, team1, year2, team2, mongo):33    """Prepare data for prediction."""34    data = []35    team_year_info = mongo.db.basketball.find_one(36        {'TeamName': str(team1), 'Season': int(year1)})37    for col in cols:38        data.append(team_year_info[col])39    tc1 = team_year_info['color1']40    team_year_info = mongo.db.basketball.find_one(41        {'TeamName': str(team2), 'Season': int(year2)})42    for col in cols:43        data.append(team_year_info[col])44    tc2 = team_year_info['color1']45    data.append(home_court.get(str(team1), 0))46    data = np.array(data)47    return data, tc1, tc248def randomize_data(year1, team1, year2, team2, data):49    """randomize data for bootstrap predictions."""50    data_std = year_team_std[year1].get(team1, year_team_std['all'])51    cols_len = len(cols)52    data_copy = data.copy()53    data_copy[0] += get_random_number() * data_std['Pace']54    data_copy[1] += get_random_number() * data_std['ORtg']55    data_copy[2] += get_random_number() * data_std['DRtg']56    data_copy[3] += get_random_number() * data_std['OeFG%'] * 10057    data_copy[4] += get_random_number() * data_std['DeFG%'] * 10058    data_copy[5] += get_random_number() * data_std['OTOV%']59    data_copy[6] += get_random_number() * data_std['DTOV%']60    data_copy[7] += get_random_number() * data_std['OORB%']61    data_copy[8] += get_random_number() * data_std['DDRB%']62    data_copy[9] += get_random_number() * data_std['OFT/FGA'] * 10063    data_copy[10] += get_random_number() * data_std['DFT/FGA'] * 10064    data_copy[42] += get_random_number() * data_std['h3P%'] * 10065    data_copy[43] += get_random_number() * data_std['hFT%'] * 10066    data_copy[44] += get_random_number() * data_std['BLK%']67    data_copy[51] += get_random_number() * data_std['AST%']68    data_copy[53] += get_random_number() * data_std['STL%'] / 10069    data_std = year_team_std[year2].get(team2, year_team_std['all'])70    data_copy[0 + cols_len] += get_random_number() * data_std['Pace']71    data_copy[1 + cols_len] += get_random_number() * data_std['ORtg']72    data_copy[2 + cols_len] += get_random_number() * data_std['DRtg']73    data_copy[3 + cols_len] += get_random_number() * data_std['OeFG%'] * 10074    data_copy[4 + cols_len] += get_random_number() * data_std['DeFG%'] * 10075    data_copy[5 + cols_len] += get_random_number() * data_std['OTOV%']76    data_copy[6 + cols_len] += get_random_number() * data_std['DTOV%']77    data_copy[7 + cols_len] += get_random_number() * data_std['OORB%']78    data_copy[8 + cols_len] += get_random_number() * data_std['DDRB%']79    data_copy[9 + cols_len] += get_random_number() * data_std['OFT/FGA'] * 10080    data_copy[10 + cols_len] += get_random_number() * data_std['DFT/FGA'] * 10081    data_copy[42 + cols_len] += get_random_number() * data_std['h3P%'] * 10082    data_copy[43 + cols_len] += get_random_number() * data_std['hFT%'] * 10083    data_copy[44 + cols_len] += get_random_number() * data_std['BLK%']84    data_copy[51 + cols_len] += get_random_number() * data_std['AST%']85    data_copy[53 + cols_len] += get_random_number() * data_std['STL%'] / 10086    return data_copy87def bootstrap(year1, team1, year2, team2, mongo):88    """predict 100 random games."""89    output = {}90    data, tc1, tc2 = prepare_data(year1, team1, year2, team2, mongo)91    data_df = pd.DataFrame(data.reshape(1, 111))92    data_copy = data.copy()93    num_trials = 9994    for i in range(num_trials):95        rand_data = randomize_data(year1, team1, year2, team2, data_copy)96        data_df.loc[len(data_df)] = rand_data97    data_df -= ml_stats_mean98    data_df = data_df / ml_stats_std99    global graph...test_cached.py
Source:test_cached.py  
2import pytest3import random4import warnings5@cached6def get_random_number(a, b, *args, **kwars):7    print(a, b)8    return random.randint(a, b)9@cached10def get_number(a, b, *args, **kwars):11    return (a + b) // 212class TestCached:13    def initialize(self):14        random.seed(42)15    def test_simple(self):16        self.initialize()17        for i in range(100):18            assert get_random_number(1, 2) == get_random_number(1, 2)19    def test_hashable_types(self):20        self.initialize()21        tpl = (1, 2.0, '123', None, True)22        for i in range(100):23            assert get_random_number(1, 2, tpl) == get_random_number(1, 2, tpl)24    def test_runtime_warning_unhashable_types(self):25        unhashable = {1: 2, 3: 4}26        with pytest.warns(RuntimeWarning):27            get_number(1, 2, unhashable)28    def test_unhashable_types(self):29        warnings.simplefilter("ignore")...test_fixture.py
Source:test_fixture.py  
...16#     assert os.path.exists(directory), 'dir not exist'171819@pytest.fixture(scope="session")20def get_random_number():21    number = random.randint(1, 100)22    print(number)23    return number242526def test_random_number(get_random_number):27    assert 0 < get_random_number <= 100282930def test_random_number_2(get_random_number):31    assert 0 < get_random_number <= 100323334class TestRandom:
...test_2.py
Source:test_2.py  
1import pytest2from proga import get_random_number3def test_get_random_number_1():4    assert isinstance(get_random_number(12), int)5def test_get_random_number_2():6    assert get_random_number(12) <= 127def test_get_random_number_3():8    assert isinstance(get_random_number(20), int)9def test_get_random_number_4():10    assert get_random_number(20) <= 2011def test_get_random_number_5():12    assert isinstance(get_random_number(123), int)13def test_get_random_number_6():...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
