Best Python code snippet using pandera_python
basicvsr_reds4_custom_load_lr_small.py
Source:basicvsr_reds4_custom_load_lr_small.py  
1exp_name = 'basicvsr_reds4_custom_load_lr_small'2# model settings3model = dict(4    type='BasicVSR',5    generator=dict(6        type='BasicVSRNet',7        mid_channels=64,8        num_blocks=30,9        spynet_pretrained='https://download.openmmlab.com/mmediting/restorers/'10        'basicvsr/spynet_20210409-c6c1bd09.pth'),11    pixel_loss=dict(type='CharbonnierLoss', loss_weight=1.0, reduction='mean'))12# model training and testing settings13train_cfg = dict(fix_iter=5000)14test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=0)15# dataset settings16train_dataset_type = 'SRREDSMultipleGTDataset_CUSTOM'17val_dataset_type = 'SRREDSMultipleGTDataset_CUSTOM'18train_pipeline = [19    dict(type='GenerateSegmentIndices', interval_list=[1]),20    dict(type='TemporalReverse', keys='lq_path', reverse_ratio=0),21    dict(22        type='LoadImageFromFileList',23        io_backend='disk',24        key='lq',25        channel_order='rgb'),26    dict(27        type='LoadImageFromFileList',28        io_backend='disk',29        key='gt',30        channel_order='rgb'),31    dict(type='RescaleToZeroOne', keys=['lq', 'gt']),32    dict(type='PairedRandomCrop', gt_patch_size=256),33    dict(34        type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,35        direction='horizontal'),36    dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),37    dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),38    dict(type='FramesToTensor', keys=['lq', 'gt']),39    dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])40]41test_pipeline = [42    dict(type='GenerateSegmentIndices', interval_list=[1]),43    dict(44        type='LoadImageFromFileList',45        io_backend='disk',46        key='lq',47        channel_order='rgb'),48    dict(49        type='LoadImageFromFileList',50        io_backend='disk',51        key='gt',52        channel_order='rgb'),53    dict(type='RescaleToZeroOne', keys=['lq', 'gt']),54    dict(type='FramesToTensor', keys=['lq', 'gt']),55    dict(56        type='Collect',57        keys=['lq', 'gt'],58        meta_keys=['lq_path', 'gt_path', 'key'])59]60demo_pipeline = [61    dict(type='GenerateSegmentIndices', interval_list=[1]),62    dict(63        type='LoadImageFromFileList',64        io_backend='disk',65        key='lq',66        channel_order='rgb'),67    dict(type='RescaleToZeroOne', keys=['lq']),68    dict(type='FramesToTensor', keys=['lq']),69    dict(type='Collect', keys=['lq'], meta_keys=['lq_path', 'key'])70]71data = dict(72    workers_per_gpu=6,73    train_dataloader=dict(samples_per_gpu=16, drop_last=True),  # 2 gpus74    val_dataloader=dict(samples_per_gpu=1),75    test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=1),76    # train77    train=dict(78        type='RepeatDataset',79        times=1000,80        dataset=dict(81            type=train_dataset_type,82            lq_folder='/data/peiyuan/custom_train/custom_low_res',83            gt_folder='/data/peiyuan/custom_train/custom_gt',84            num_input_frames=15,85            pipeline=train_pipeline,86            scale=4,87            val_partition='REDS4',88            test_mode=False)),89    # val90    val=dict(91        type=val_dataset_type,92        lq_folder='/data/peiyuan/custom_train/custom_low_res',93        gt_folder='/data/peiyuan/custom_train/custom_gt',94        num_input_frames=100,95        pipeline=test_pipeline,96        scale=4,97        val_partition='REDS4',98        test_mode=True),99    # test100    test=dict(101        type=val_dataset_type,102        lq_folder='/data/peiyuan/custom_train/custom_low_res',103        gt_folder='/data/peiyuan/custom_train/custom_gt',104        num_input_frames=100,105        pipeline=test_pipeline,106        scale=4,107        val_partition='REDS4',108        test_mode=True),109)110# optimizer111optimizers = dict(112    generator=dict(113        type='Adam',114        lr=8e-5,115        betas=(0.9, 0.99),116        paramwise_cfg=dict(custom_keys={'spynet': dict(lr_mult=0.125)})))117# learning policy118total_iters = 150000119lr_config = dict(120    policy='CosineRestart',121    by_epoch=False,122    periods=[150000],123    restart_weights=[1],124    min_lr=1e-7)125checkpoint_config = dict(interval=2500, save_optimizer=True, by_epoch=False)126# remove gpu_collect=True in non distributed training127evaluation = dict(interval=2500, save_image=False, gpu_collect=True)128log_config = dict(129    interval=100,130    hooks=[131        dict(type='TextLoggerHook', by_epoch=False),132        # dict(type='TensorboardLoggerHook'),133    ])134visual_config = None135# runtime settings136dist_params = dict(backend='nccl')137log_level = 'INFO'138work_dir = f'./work_dirs/{exp_name}'139load_from = None140resume_from = None141workflow = [('train', 1)]...basicvsr_reds4_custom_load.py
Source:basicvsr_reds4_custom_load.py  
1exp_name = 'basicvsr_reds4_custom_load'2# model settings3model = dict(4    type='BasicVSR',5    generator=dict(6        type='BasicVSRNet',7        mid_channels=64,8        num_blocks=30,9        spynet_pretrained='https://download.openmmlab.com/mmediting/restorers/'10        'basicvsr/spynet_20210409-c6c1bd09.pth'),11    pixel_loss=dict(type='CharbonnierLoss', loss_weight=1.0, reduction='mean'))12# model training and testing settings13train_cfg = dict(fix_iter=5000)14test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=0)15# dataset settings16train_dataset_type = 'SRREDSMultipleGTDataset_CUSTOM'17val_dataset_type = 'SRREDSMultipleGTDataset_CUSTOM'18train_pipeline = [19    dict(type='GenerateSegmentIndices', interval_list=[1]),20    dict(type='TemporalReverse', keys='lq_path', reverse_ratio=0),21    dict(22        type='LoadImageFromFileList',23        io_backend='disk',24        key='lq',25        channel_order='rgb'),26    dict(27        type='LoadImageFromFileList',28        io_backend='disk',29        key='gt',30        channel_order='rgb'),31    dict(type='RescaleToZeroOne', keys=['lq', 'gt']),32    dict(type='PairedRandomCrop', gt_patch_size=256),33    dict(34        type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,35        direction='horizontal'),36    dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),37    dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),38    dict(type='FramesToTensor', keys=['lq', 'gt']),39    dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])40]41test_pipeline = [42    dict(type='GenerateSegmentIndices', interval_list=[1]),43    dict(44        type='LoadImageFromFileList',45        io_backend='disk',46        key='lq',47        channel_order='rgb'),48    dict(49        type='LoadImageFromFileList',50        io_backend='disk',51        key='gt',52        channel_order='rgb'),53    dict(type='RescaleToZeroOne', keys=['lq', 'gt']),54    dict(type='FramesToTensor', keys=['lq', 'gt']),55    dict(56        type='Collect',57        keys=['lq', 'gt'],58        meta_keys=['lq_path', 'gt_path', 'key'])59]60demo_pipeline = [61    dict(type='GenerateSegmentIndices', interval_list=[1]),62    dict(63        type='LoadImageFromFileList',64        io_backend='disk',65        key='lq',66        channel_order='rgb'),67    dict(type='RescaleToZeroOne', keys=['lq']),68    dict(type='FramesToTensor', keys=['lq']),69    dict(type='Collect', keys=['lq'], meta_keys=['lq_path', 'key'])70]71data = dict(72    workers_per_gpu=6,73    train_dataloader=dict(samples_per_gpu=16, drop_last=True),  # 2 gpus74    val_dataloader=dict(samples_per_gpu=1),75    test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=1),76    # train77    train=dict(78        type='RepeatDataset',79        times=1000,80        dataset=dict(81            type=train_dataset_type,82            lq_folder='/data/peiyuan/custom_train/custom_low_res',83            gt_folder='/data/peiyuan/custom_train/custom_gt',84            num_input_frames=15,85            pipeline=train_pipeline,86            scale=4,87            val_partition='REDS4',88            test_mode=False)),89    # val90    val=dict(91        type=val_dataset_type,92        lq_folder='/data/peiyuan/custom_train/custom_low_res',93        gt_folder='/data/peiyuan/custom_train/custom_gt',94        num_input_frames=100,95        pipeline=test_pipeline,96        scale=4,97        val_partition='REDS4',98        test_mode=True),99    # test100    test=dict(101        type=val_dataset_type,102        lq_folder='/data/peiyuan/custom_train/custom_low_res',103        gt_folder='/data/peiyuan/custom_train/custom_gt',104        num_input_frames=100,105        pipeline=test_pipeline,106        scale=4,107        val_partition='REDS4',108        test_mode=True),109)110# optimizer111optimizers = dict(112    generator=dict(113        type='Adam',114        lr=4e-4,115        betas=(0.9, 0.99),116        paramwise_cfg=dict(custom_keys={'spynet': dict(lr_mult=0.125)})))117# learning policy118total_iters = 150000119lr_config = dict(120    policy='CosineRestart',121    by_epoch=False,122    periods=[150000],123    restart_weights=[1],124    min_lr=1e-7)125checkpoint_config = dict(interval=1000, save_optimizer=True, by_epoch=False)126# remove gpu_collect=True in non distributed training127evaluation = dict(interval=1000, save_image=False, gpu_collect=True)128log_config = dict(129    interval=100,130    hooks=[131        dict(type='TextLoggerHook', by_epoch=False),132        # dict(type='TensorboardLoggerHook'),133    ])134visual_config = None135# runtime settings136dist_params = dict(backend='nccl')137log_level = 'INFO'138work_dir = f'./work_dirs/{exp_name}'139load_from = None140resume_from = None141workflow = [('train', 1)]...basicvsr_reds4_custom.py
Source:basicvsr_reds4_custom.py  
1exp_name = 'basicvsr_reds4_custom'2# model settings3model = dict(4    type='BasicVSR',5    generator=dict(6        type='BasicVSRNet',7        mid_channels=64,8        num_blocks=30,9        spynet_pretrained='https://download.openmmlab.com/mmediting/restorers/'10        'basicvsr/spynet_20210409-c6c1bd09.pth'),11    pixel_loss=dict(type='CharbonnierLoss', loss_weight=1.0, reduction='mean'))12# model training and testing settings13train_cfg = dict(fix_iter=5000)14test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=0)15# dataset settings16train_dataset_type = 'SRREDSMultipleGTDataset_CUSTOM'17val_dataset_type = 'SRREDSMultipleGTDataset_CUSTOM'18train_pipeline = [19    dict(type='GenerateSegmentIndices', interval_list=[1]),20    dict(type='TemporalReverse', keys='lq_path', reverse_ratio=0),21    dict(22        type='LoadImageFromFileList',23        io_backend='disk',24        key='lq',25        channel_order='rgb'),26    dict(27        type='LoadImageFromFileList',28        io_backend='disk',29        key='gt',30        channel_order='rgb'),31    dict(type='RescaleToZeroOne', keys=['lq', 'gt']),32    dict(type='PairedRandomCrop', gt_patch_size=256),33    dict(34        type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,35        direction='horizontal'),36    dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),37    dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),38    dict(type='FramesToTensor', keys=['lq', 'gt']),39    dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])40]41test_pipeline = [42    dict(type='GenerateSegmentIndices', interval_list=[1]),43    dict(44        type='LoadImageFromFileList',45        io_backend='disk',46        key='lq',47        channel_order='rgb'),48    dict(49        type='LoadImageFromFileList',50        io_backend='disk',51        key='gt',52        channel_order='rgb'),53    dict(type='RescaleToZeroOne', keys=['lq', 'gt']),54    dict(type='FramesToTensor', keys=['lq', 'gt']),55    dict(56        type='Collect',57        keys=['lq', 'gt'],58        meta_keys=['lq_path', 'gt_path', 'key'])59]60demo_pipeline = [61    dict(type='GenerateSegmentIndices', interval_list=[1]),62    dict(63        type='LoadImageFromFileList',64        io_backend='disk',65        key='lq',66        channel_order='rgb'),67    dict(type='RescaleToZeroOne', keys=['lq']),68    dict(type='FramesToTensor', keys=['lq']),69    dict(type='Collect', keys=['lq'], meta_keys=['lq_path', 'key'])70]71data = dict(72    workers_per_gpu=6,73    train_dataloader=dict(samples_per_gpu=16, drop_last=True),  # 2 gpus74    val_dataloader=dict(samples_per_gpu=1),75    test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=1),76    # train77    train=dict(78        type='RepeatDataset',79        times=1000,80        dataset=dict(81            type=train_dataset_type,82            lq_folder='/data/peiyuan/custom_train/custom_low_res',83            gt_folder='/data/peiyuan/custom_train/custom_gt',84            num_input_frames=15,85            pipeline=train_pipeline,86            scale=4,87            val_partition='REDS4',88            test_mode=False)),89    # val90    val=dict(91        type=val_dataset_type,92        lq_folder='/data/peiyuan/custom_train/custom_low_res',93        gt_folder='/data/peiyuan/custom_train/custom_gt',94        num_input_frames=100,95        pipeline=test_pipeline,96        scale=4,97        val_partition='REDS4',98        test_mode=True),99    # test100    test=dict(101        type=val_dataset_type,102        lq_folder='/data/peiyuan/custom_train/custom_low_res',103        gt_folder='/data/peiyuan/custom_train/custom_gt',104        num_input_frames=100,105        pipeline=test_pipeline,106        scale=4,107        val_partition='REDS4',108        test_mode=True),109)110# optimizer111optimizers = dict(112    generator=dict(113        type='Adam',114        lr=4e-4,115        betas=(0.9, 0.99),116        paramwise_cfg=dict(custom_keys={'spynet': dict(lr_mult=0.125)})))117# learning policy118total_iters = 150000119lr_config = dict(120    policy='CosineRestart',121    by_epoch=False,122    periods=[150000],123    restart_weights=[1],124    min_lr=1e-7)125checkpoint_config = dict(interval=1000, save_optimizer=True, by_epoch=False)126# remove gpu_collect=True in non distributed training127evaluation = dict(interval=1000, save_image=False, gpu_collect=True)128log_config = dict(129    interval=100,130    hooks=[131        dict(type='TextLoggerHook', by_epoch=False),132        # dict(type='TensorboardLoggerHook'),133    ])134visual_config = None135# runtime settings136dist_params = dict(backend='nccl')137log_level = 'INFO'138work_dir = f'./work_dirs/{exp_name}'139load_from = None140resume_from = None141workflow = [('train', 1)]...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
