Best Python code snippet using pandera_python
bresanham_line.py
Source:bresanham_line.py  
...122            transform_out = transform_in123    transform_final = lambda point: Point(transform_out(point).x + start.x,124                                          transform_out(point).y + start.y)125    return (transform_final(point) for point in126            bresanham_quad0(Point(0, 0), transform_in(end)))127if __name__ == '__main__':128    parser = argparse.ArgumentParser(129        formatter_class=argparse.ArgumentDefaultsHelpFormatter)130    parser.add_argument("X_START",131                        type=int,132                        help="X coordinate of starting point")133    parser.add_argument("Y_START",134                        type=int,135                        help="Y coordinate of starting point")136    parser.add_argument("X_END",137                        type=int,138                        help="X coordinate of ending point")139    parser.add_argument("Y_END",140                        type=int,...loaders.py
Source:loaders.py  
1from torchvision import datasets2from torch.utils.data import DataLoader3class LoadData:4    def __init__(self, dataset, transform_in, args):5        dataset = dataset.upper()6        if dataset == 'MNIST':7            self.train_loader, self.test_loader, self.train_set, self.test_set = self.mnist(transform_in, args)8        elif dataset == 'FMNIST':9            self.train_loader, self.test_loader, self.train_set, self.test_set = self.fmnist(transform_in, args)10        elif dataset == 'CIFAR10':11            self.train_loader, self.test_loader, self.train_set, self.test_set = self.cifar10(transform_in, args)12        elif dataset == 'CIFAR100':13            self.train_loader, self.test_loader, self.train_set, self.test_set = self.cifar100(transform_in, args)14        else:15            print('Must choose a dataset')16        #print(f"Training Input Shape: {self.train_set.data[0].shape}")17        #print(f"Test Input Shape: {self.test_set.data[0].shape}")18    def get_datasets(self):19        return self.train_set, self.test_set20    def get_loaders(self):21        return self.train_loader, self.test_loader22    @staticmethod23    def mnist(transform_in, args):24        train_set = datasets.MNIST(args.data_path, train=True, download=True,25                                   transform=transform_in)26        train_loader = DataLoader(train_set, batch_size=args.batch_size,27                                  shuffle=True, num_workers=args.num_workers,28                                  drop_last=True)29        test_set = datasets.MNIST(args.data_path, train=False, download=True,30                                  transform=transform_in)31        test_loader = DataLoader(test_set, batch_size=args.batch_size,32                                 shuffle=False, num_workers=round(args.num_workers / 2),33                                 drop_last=True)34        return train_loader, test_loader, train_set, test_set35    @staticmethod36    def fmnist(transform_in, args):37        train_set = datasets.FashionMNIST(args.data_path, train=True, download=True,38                                          transform=transform_in)39        train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)40        test_set = datasets.FashionMNIST(args.data_path, train=False, download=True,41                                         transform=transform_in)42        test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=round(args.num_workers / 2))43        return train_loader, test_loader, train_set, test_set44    @staticmethod45    def cifar10(transform_in, args):46        train_set = datasets.CIFAR10(args.data_path, train=True, download=True,47                                     transform=transform_in)48        train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)49        test_set = datasets.CIFAR10(args.data_path, train=False, download=True,50                                    transform=transform_in)51        test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=round(args.num_workers / 2))52        return train_loader, test_loader, train_set, test_set53    @staticmethod54    def cifar100(transform_in, args):55        train_set = datasets.CIFAR100(args.data_path, train=True, download=True,56                                      transform=transform_in)57        train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)58        test_set = datasets.CIFAR100(args.data_path, train=False, download=True,59                                     transform=transform_in)60        test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=round(args.num_workers / 2))...LinkedTransformTest.py
Source:LinkedTransformTest.py  
1import unittest2from kivy.event import EventDispatcher3from .LinkedTransform import LinkedTransform4import numpy as np5import cv26from pathlib import Path7class LinkedTransformMock(LinkedTransform):8    def __init__(self, *args, **kwargs):9        self.received = []10        super().__init__(*args, **kwargs)11    def receive_frame(self, frame: np.ndarray):12        self.received.append(frame)13class SimpleObserver(EventDispatcher):14    pass15class LinkedTransformTest(unittest.TestCase):16    @classmethod17    def get_test_image(cls) -> np.ndarray:18        return cv2.imread(str((Path(__file__).parent.parent / Path('resource/test/Archaeologist-Tux-icon.png'))))19    def test_frames_are_passed_through(self):20        transform_in = LinkedTransform()21        transform_out = LinkedTransformMock()22        transform_in.attach_sink(transform_out)23        frame = LinkedTransformTest.get_test_image()24        transform_in.receive_frame(frame)25        self.assertIn(frame, transform_out.received, 'Transform didn\'t passthrough the frame')26    def test_frame_is_being_transformed(self):27        transform_in = LinkedTransform()28        transform_out = LinkedTransformMock()29        transform_in.attach_sink(transform_out)30        frame = LinkedTransformTest.get_test_image()31        transform_in.transform_fn = np.transpose32        transform_in.receive_frame(frame)33        self.assertTrue((frame.T == transform_out.received).all())34    def test_observer_is_being_notified(self):35        transform_in = LinkedTransform()36        transform_out = LinkedTransformMock()37        transform_in.attach_sink(transform_out)38        results = {'received': False, 'processed': False}39        def register_frame_received(*args):40            results['received'] = True41        def register_frame_processed(*args):42            results['processed'] = True43        transform_in.bind(on_frame_received=register_frame_received, on_frame_processed=register_frame_processed)44        frame = LinkedTransformTest.get_test_image()45        transform_in.receive_frame(frame)46        self.assertTrue(results['received'], 'Observer did not receive "on_frame_received" event')...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
