Best Python code snippet using pypom_form_python
Monitor.py
Source:Monitor.py  
1#!/usr/bin/env python32# -*- coding: utf-8 -*-3"""4Created on Fri Jun 22 10:52:06 20185@author: zhangzhanming6"""7import pandas as pd8import time9import threading10import datetime11class AccDataBase(object):12    feature_columns = ['START_TIME', 'STOP_TIME', 'MEAN_VM', 'STD_VM', 'MAX_VM', 'DOM_FREQ_VM',13       'DOM_FREQ_POWER_RATIO_VM', 'HIGHEND_FREQ_POWER_RATIO_VM', 'RANGE_VM',14       'ACTIVE_SAMPLE_PERC_VM', 'NUMBER_OF_ACTIVATIONS_VM',15       'ACTIVATION_INTERVAL_VAR_VM', 'MEDIAN_X_ANGLE', 'MEDIAN_Y_ANGLE',16       'MEDIAN_Z_ANGLE', 'RANGE_X_ANGLE', 'RANGE_Y_ANGLE', 'RANGE_Z_ANGLE']17    18    #initialized feature data with column names19    def __init__(self, monitor=None):20        self.monitor = monitor21        self.featuredata = pd.DataFrame(columns = self.feature_columns)22        self.annotationdata = pd.DataFrame()23        self.rawdata = pd.DataFrame()24    def set_data_set(self, featuredata=None, annotationdata=None, rawdata=None):25        if isinstance(featuredata, str):26            self.featuredata = pd.read_csv(featuredata)27        if isinstance(annotationdata, str):28            self.annotationdata = pd.read_csv(annotationdata)29        if isinstance(rawdata, str):30            self.rawdata = pd.read_csv(rawdata)31        if isinstance(featuredata, pd.DataFrame):32            self.featuredata = featuredata33        if isinstance(annotationdata, pd.DataFrame):34            self.annotationdata = annotationdata35        if isinstance(rawdata, pd.DataFrame):36            self.rawdata = rawdata37    def set_monitor(self, monitor):38        self.monitor = monitor39    def update(self, feature_update=None, annotation_update=None,40               raw_update=None):41        self.__append_data(feature_update, annotation_update, raw_update)42# =============================================================================43#         self.__delete_data(feature_update is not None,44#                            annotation_update is not None,45#                            raw_update is not None)46# =============================================================================47    def __append_data(self, feature_update, annotation_update, raw_update):48        if feature_update is not None:49            if self.featuredata.shape[0] == 0:50                self.featuredata = feature_update51            else: 52                self.featuredata = pd.concat([self.featuredata, feature_update]).reset_index(drop=True)53        if annotation_update is not None:54            if self.annotationdata.shape[0] == 0:55                self.annotationdata = annotation_update56            else:57                self.annotationdata = pd.concat([self.annotationdata, annotation_update]).reset_index(drop=True)58        if raw_update is not None:59            if self.rawdata.shape[0] == 0:60                self.rawdata = raw_update61            else:62                self.rawdata = pd.concat([self.rawdata, raw_update]).reset_index(drop=True)63    def __delete_data(self, update_feature, update_annotation, update_raw):64        if update_feature:65            if len(self.featuredata.index):66                pass67class RepeatedTimer(object):68    def __init__(self, interval, function, *args, **kwargs):69        self.count = 070        self._timer = None71        self.interval = interval72        self.function = function73        self.args = args74        self.kwargs = kwargs75        self.is_running = False76        self.next_call = time.time()77        self.start()78    def _run(self):79        self.is_running = False80        self.start()81        self.function(self.count, *self.args, **self.kwargs)82        self.count += 183    def start(self):84        if not self.is_running:85            self.next_call += self.interval86            self._timer = threading.Timer(self.next_call - time.time(), self._run)87        self._timer.start()88        self.is_running = True89    def stop(self):90        self._timer.cancel()91        self.is_running = False92class Monitor(object):93    def __init__(self, refresh=12.5, sampling_rate=80, feature_time = 12.8,test=True):94        self.__observers = []95        self.feature_time = feature_time96        self.refresh = refresh97        self.sampling_rate = sampling_rate98        self.test = test99    def register_observer(self, observer):100        self.__observers.append(observer)101    def notify_observers(self, feature_update=None, annotation_update=None,102               raw_update=None):103        for observer in self.__observers:104            observer.update(feature_update=feature_update,105                            annotation_update=annotation_update,106                            raw_update=raw_update)107    def listen(self):108        if self.test:109            featuredata = pd.read_csv('/Users/zhangzhanming/Desktop/mHealth/Data/SPADES_2/Derived/Preprocessed/2015/10/08/14/ActigraphGT9X-PostureAndActivity-NA.TAS1E23150066-PostureAndActivity.2015-10-08-14-00-00-000-M0400.feature.csv')110            featuredata = featuredata.values.tolist()111            featuredata.sort(key=lambda x: x[1])112            #raw_annotation = pd.read_csv('/Users/zhangzhanming/Desktop/mHealth/Data/SPADES_2/MasterSynced/2015/10/08/14/splitted.annotation.csv')113            #classmapping = pd.read_csv('/Users/zhangzhanming/Desktop/mHealth/Data/SPADES_2/MasterSynced/2015/10/08/14/class_mapping.csv')114            #annotationdata = pd.merge(raw_annotation, classmapping, left_on='LABEL_NAME', right_on='activity', how='inner')115            #annotationdata = annotationdata.drop('activity', axis=1)116            annotationdata = pd.read_csv('/Users/zhangzhanming/Desktop/mHealth/Data/SPADES_2/Derived/Preprocessed/2015/10/08/14/SPADESInLab.alvin-SPADESInLab.2015-10-08-14-10-41-252-M0400.class.csv')117            annotationdata = annotationdata.values.tolist()118            # sort annotation data by end time, just like in real situations119            annotationdata.sort(key=lambda x: x[1])120            rawdata = pd.read_csv('/Users/zhangzhanming/Desktop/mHealth/Data/SPADES_2/Derived/Preprocessed/2015/10/08/14/ActigraphGT9X-AccelerationCalibrated-NA.TAS1E23150066-AccelerationCalibrated.2015-10-08-14-00-00-000-M0400.sensor.csv')121# =============================================================================122#             last_time = pd.to_datetime(rawdata.iloc[0,0])123#             feature_interval = datetime.timedelta(seconds=self.feature_time)124#             threshold_time = last_time+feature_interval125#             feature_count = 0126# 127# =============================================================================128            def __get_new_data(count, refresh, sampling_rate, rawdata):129                feature_update = []130                raw_update = rawdata[int(count*refresh/1000*sampling_rate):131                    int((count+1)*refresh/1000*sampling_rate)]132                currtime = pd.to_datetime(raw_update.iloc[-1,0])133# =============================================================================134#                 nonlocal threshold_time135#                 if  currtime > threshold_time:136#                     nonlocal feature_count137#                     feature_update = featuredata.iloc[feature_count:feature_count+1,:]138#                     threshold_time = currtime + feature_interval139#                     feature_count += 1140# =============================================================================141                annotation_update = []142                while currtime >= pd.to_datetime(annotationdata[0][1]):143                    annotation_update.append(annotationdata.pop(0))144                    feature_update.append(featuredata.pop(0))145                    146                feature_update=pd.DataFrame(feature_update, 147                                               columns=['START_TIME', 'STOP_TIME', 'MEAN_VM', 'STD_VM', 'MAX_VM', 'DOM_FREQ_VM',148       'DOM_FREQ_POWER_RATIO_VM', 'HIGHEND_FREQ_POWER_RATIO_VM', 'RANGE_VM',149       'ACTIVE_SAMPLE_PERC_VM', 'NUMBER_OF_ACTIVATIONS_VM',150       'ACTIVATION_INTERVAL_VAR_VM', 'MEDIAN_X_ANGLE', 'MEDIAN_Y_ANGLE',151       'MEDIAN_Z_ANGLE', 'RANGE_X_ANGLE', 'RANGE_Y_ANGLE', 'RANGE_Z_ANGLE'])152                annotation_update=pd.DataFrame(annotation_update, 153                                               columns=['START_TIME', 'STOP_TIME', 'posture', 'four_classes', 'MDCAS',154       'indoor_outdoor', 'activity', 'activity_intensity', 'hand_gesture'])155                self.notify_observers(raw_update = raw_update, 156                                      feature_update = feature_update,157                                      annotation_update = annotation_update)158            self.rt = RepeatedTimer(self.refresh/1000, __get_new_data, self.refresh,159                              self.sampling_rate, rawdata)160# =============================================================================161#             try:162#                 time.sleep(64)163#             finally:164#                 self.rt.stop()165# 166# =============================================================================167if __name__ == '__main__':168    monitor = Monitor()169    db = AccDataBase(monitor)170    monitor.register_observer(db)...contrib.py
Source:contrib.py  
...8        }9        update_query = {10            '$set': {field: field_value}11        }12        self.raw_update(filter_query, update_query)13    def add(self, field, object_pk, field_value, cnt_field=None):14        filter_query = {15            '_id': ObjectId(object_pk),16            field: {'$ne': field_value}17        }18        update_query = {19            '$addToSet': {field: field_value}20        }21        if cnt_field:22            update_query['$inc'] = {cnt_field: 1}23        self.raw_update(filter_query, update_query)24    def batch_add(self, field, object_pks, field_value, cnt_field=None):25        filter_query = {26            '_id': {'$in': map(lambda pk: ObjectId(pk), object_pks)},27            field: {'$ne': field_value}28        }29        update_query = {30            '$addToSet': {field: field_value}31        }32        if cnt_field:33            update_query['$inc'] = {cnt_field: 1}34        self.raw_update(filter_query, update_query)35    def remove(self, field, object_pk, field_value, cnt_field=None):36        filter_query = {37            '_id': ObjectId(object_pk),38            field: field_value39        }40        update_query = {41            '$pull': {field: field_value}42        }43        if cnt_field:44            update_query['$inc'] = {cnt_field: -1}45        self.raw_update(filter_query, update_query)46    def find_and_modify(self, collection_name, query={}, update=None, upsert=False, **kwargs):47        database_wrapper = connections['default']48        collection = database_wrapper.get_collection(collection_name)49        result = collection.find_and_modify(query, update=update, upsert=upsert, **kwargs)50        return result51    def pymongo_aggregate(self, collection_name, match=None, group=None, project=None, unwind=None, sort=None, extra=None):52        database_wrapper = connections['default']53        collection = database_wrapper.get_collection(collection_name)54        query = []55        if match:56            query.append({"$match": match})57        if project:58            query.append({"$project": project})59        if unwind:60            query.append({"$unwind": unwind})61        if group:62            query.append({"$group": group})63        if sort:64            query.append({"$sort": sort})65        if extra:66            query.append(extra)67        r = collection.aggregate(query)68        if r["ok"] == 1:69            return r["result"]70        else:71            return []72    def unset(self, field, object_pk):73        filter_query = {74            '_id': ObjectId(object_pk),75        }76        update_query = {77            '$unset': {field: 1}78        }79        self.raw_update(filter_query, update_query)        80    def batch_remove(self, field, object_pks, field_value, cnt_field=None):81        filter_query = {82            '_id': {'$in': map(lambda pk: ObjectId(pk), object_pks)},83            field: field_value84        }85        update_query = {86            '$pull': {field: field_value}87        }88        if cnt_field:89            update_query['$inc'] = {cnt_field: -1}90        self.raw_update(filter_query, update_query)91    def get_by_items(self, field, items):92        filter_query = {93            field: {94                '$all': items,95                '$size': len(items)96            }97        }98        return self.raw_query(filter_query)99    def clean_multiple_objects(self, **query):100        objs = self.filter(**query)101        obj = objs[0]102        for each_obj in objs[1:]:103            each_obj.delete()104        return obj...gradient_descent.py
Source:gradient_descent.py  
1import logging2import numpy as np3logger = logging.getLogger(__name__)4class GradientDescent(object):5    def __init__(self, learning_rate, inertia=0.0, annealing=np.Inf, last_learning_rate=None):6        self.last_learning_rate = last_learning_rate7        self.learning_rate = learning_rate8        self.inertia = inertia9        self.annealing = annealing10        self.last_update = None11        self.n_iter = 012    def transform(self, grad):13        """Individuals must be on the LAST dimensions"""14        p_anneal = self.n_iter / self.annealing15        if self.last_learning_rate is None:16            learning_rate = self.learning_rate / (1.0 + p_anneal)17        else:18            g = (self.last_learning_rate / self.annealing) ** min(p_anneal, 1.0)19            learning_rate = self.learning_rate * g20        self.n_iter += 1.021        raw_update = learning_rate * grad.mean(axis=-1)22        if self.last_update is None:23            self.last_update = raw_update24        self.last_update = (self.inertia * self.last_update +25                            (1 - self.inertia) * raw_update)26        return self.last_update27    def __str__(self):28        return ("<GradientDescent"29                " learning_rate={learning_rate}"30                " last_learning_rate={last_learning_rate}"31                " inertia={inertia}"...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
