Best Python code snippet using slash
modules.py
Source:modules.py  
1import numpy as np2import tensorflow as tf3class NeuralNetwork(object):4  def conv2d(self, input, filter_shape, scope_name, strides=[1, 1, 1, 1]):5    xavier_initializer = tf.contrib.layers.xavier_initializer6    with tf.variable_scope(scope_name):7      W = tf.get_variable(initializer=xavier_initializer(uniform=False),8                          name="W",9                          shape=filter_shape)10      b = tf.get_variable(initializer=xavier_initializer(uniform=False),11                          name="b",12                          shape=[filter_shape[3]])13      out = tf.nn.conv2d(input, W, padding="SAME", strides=strides)14      out = tf.nn.bias_add(out, b)15      return out16  def conv2d_relu(self, input, filter_shape, scope_name, strides=[1, 1, 1, 1]):17    xavier_initializer = tf.contrib.layers.xavier_initializer18    with tf.variable_scope(scope_name):19      W = tf.get_variable(initializer=xavier_initializer(uniform=False),20                          name="W",21                          shape=filter_shape)22      b = tf.get_variable(initializer=xavier_initializer(uniform=False),23                          name="b",24                          shape=[filter_shape[3]])25      out = tf.nn.conv2d(input, W, padding="SAME", strides=strides)26      out = tf.nn.bias_add(out, b)27      out = tf.contrib.layers.batch_norm(out)28      out = tf.nn.relu(out, name="out")29      return out30  def maxpool2d(self, input, scope_name, pool_shape=[1, 2, 2, 1], strides=[1, 2, 2, 1]):31    with tf.variable_scope(scope_name):32      out = tf.nn.max_pool(input,33                           ksize=pool_shape,34                           name="out",35                           padding="SAME",36                           strides=strides)37      return out38  def dropout(self, input, keep_prob, scope_name):39    with tf.variable_scope(scope_name):40      out = tf.nn.dropout(input, keep_prob, name="out")41      return out42  def fc(self, input, output_shape, scope_name):43    xavier_initializer = tf.contrib.layers.xavier_initializer44    with tf.variable_scope(scope_name):45      input_shape = input.shape[1:]46      input_shape = int(np.prod(input_shape))47      W = tf.get_variable(name="W",48                          shape=[input_shape, output_shape],49                          initializer=xavier_initializer(uniform=False))50      b = tf.get_variable(name="b",51                          shape=[output_shape],52                          initializer=xavier_initializer(uniform=False))53      input = tf.reshape(input, [-1, input_shape])54      # out = tf.nn.relu(tf.add(tf.matmul(input, W), b), name="out")55      out = tf.add(tf.matmul(input, W), b, name="out")56      return out57  def deconv2d(self, input, filter_shape, num_outputs, scope_name, strides=[1, 1]):58    xavier_initializer = tf.contrib.layers.xavier_initializer59    xavier_initializer_conv2d = tf.contrib.layers.xavier_initializer_conv2d60    with tf.variable_scope(scope_name):61      out = tf.contrib.layers.conv2d_transpose(input,62                                               # activation_fn=tf.nn.relu,63                                               activation_fn=None,64                                               biases_initializer=xavier_initializer(uniform=False),65                                               kernel_size=filter_shape,66                                               num_outputs=num_outputs,67                                               padding="SAME",68                                               stride=strides,69                                               weights_initializer=xavier_initializer_conv2d(uniform=False))70      out = tf.identity(out, name="out")71      return out72  def upsample(self, input, scope_name, factor=[2, 2]):73    size = [int(input.shape[1] * factor[0]), int(input.shape[2] * factor[1])]74    with tf.variable_scope(scope_name):75      out = tf.image.resize_bilinear(input, size=size, align_corners=None, name="out")76      return out77class ConvEncoder(NeuralNetwork):78  def __init__(self, input_shape, keep_prob, scope_name="encoder"):79    self.input_shape = input_shape80    self.keep_prob = keep_prob81    self.scope_name = scope_name82  def build_graph(self, input):83    with tf.variable_scope(self.scope_name):84      conv1 = self.conv2d_relu(input, filter_shape=[3, 3, 1, 8], scope_name="conv1")  # (232, 196, 8)85      pool1 = self.maxpool2d(conv1, scope_name="pool1")  # (116, 98, 8)86      drop1 = self.dropout(pool1, keep_prob=self.keep_prob, scope_name="drop1")87      conv2 = self.conv2d_relu(drop1, filter_shape=[5, 5, 8, 16], scope_name="conv2")  # (116, 98, 16)88      pool2 = self.maxpool2d(conv2, scope_name="pool2")  # (58, 49, 16)89      drop2 = self.dropout(pool2, keep_prob=self.keep_prob, scope_name="drop2")90      drop2 = tf.reshape(drop2, shape=[-1, 58*49*16])  # (45472,)91      fc1 = self.fc(drop2, output_shape=1024, scope_name="fc1")92      drop3 = self.dropout(fc1, keep_prob=self.keep_prob, scope_name="drop3")93      fc2 = self.fc(drop3, output_shape=256, scope_name="fc2")94      out = tf.identity(fc2, name="out")95    return out96class DeconvDecoder(NeuralNetwork):97  def __init__(self, keep_prob, output_shape, scope_name="decoder"):98    self.keep_prob = keep_prob99    self.output_shape = output_shape100    self.scope_name = scope_name101  def build_graph(self, input):102    with tf.variable_scope(self.scope_name):103      fc1 = self.fc(input, output_shape=1024, scope_name="fc1")104      drop1 = self.dropout(fc1, keep_prob=self.keep_prob, scope_name="drop1")105      fc2 = self.fc(drop1, output_shape=58*49*16, scope_name="fc2")106      drop2 = self.dropout(fc2, keep_prob=self.keep_prob, scope_name="drop2")107      drop2 = tf.reshape(drop2, shape=[-1, 58, 49, 16])108      up1 = self.upsample(drop2, scope_name="up1", factor=[2, 2])  # (116, 98, 16)109      deconv1 = self.deconv2d(up1, filter_shape=[5, 5], num_outputs=8, scope_name="deconv1")  # (116, 98, 8)110      up2 = self.upsample(deconv1, scope_name="up2", factor=[2, 2])111      deconv2 = self.deconv2d(up2, filter_shape=[3, 3], num_outputs=1, scope_name="deconv2")  # (232, 196, 1)112      out = tf.identity(deconv2, name="out")113    return out114class UNet(NeuralNetwork):115  def __init__(self, input_shape, keep_prob, output_shape, scope_name="unet"):116    self.input_shape = input_shape117    self.keep_prob = keep_prob118    self.output_shape = output_shape119    self.scope_name = scope_name120  def build_graph(self, input):121    with tf.variable_scope(self.scope_name):122      # Conv123      conv1 = self.conv2d_relu(input, filter_shape=[3, 3, 1, 64], scope_name="conv1")  # (b, 232, 196, 64)124      drop1 = self.dropout(conv1, keep_prob=self.keep_prob, scope_name="drop1")125      conv2 = self.conv2d_relu(drop1, filter_shape=[3, 3, 64, 64], scope_name="conv2")  # (b, 232, 196, 64)126      drop2 = self.dropout(conv2, keep_prob=self.keep_prob, scope_name="drop2")127      pool1 = self.maxpool2d(drop2, scope_name="pool1")  # (b, 116, 98, 64)128      conv3 = self.conv2d_relu(pool1, filter_shape=[3, 3, 64, 128], scope_name="conv3")  # (b, 116, 98, 128)129      drop3 = self.dropout(conv3, keep_prob=self.keep_prob, scope_name="drop3")130      conv4 = self.conv2d_relu(drop3, filter_shape=[3, 3, 128, 128], scope_name="conv4")  # (b, 116, 98, 128)131      drop4 = self.dropout(conv4, keep_prob=self.keep_prob, scope_name="drop4")132      pool2 = self.maxpool2d(conv4, scope_name="pool2")  # (b, 58, 49, 128)133      conv5 = self.conv2d_relu(pool2, filter_shape=[3, 3, 128, 256], scope_name="conv5")  # (b, 58, 49, 256)134      drop5 = self.dropout(conv5, keep_prob=self.keep_prob, scope_name="drop5")135      conv6 = self.conv2d_relu(drop5, filter_shape=[3, 3, 256, 256], scope_name="conv6")  # (b, 58, 49, 256)136      drop6 = self.dropout(conv6, keep_prob=self.keep_prob, scope_name="drop6")137      # Deconv138      up1 = self.upsample(drop6, scope_name="up1", factor=[2, 2])  # (b, 116, 98, 256)139      deconv1 = self.deconv2d(up1, filter_shape=[2, 2], num_outputs=128, scope_name="deconv1")  # (b, 116, 98, 128)140      concat1 = tf.concat([drop4, deconv1], axis=3)  # (b, 116, 98, 256)141      conv7 = self.conv2d_relu(concat1, filter_shape=[3, 3, 256, 128], scope_name="conv7")  # (b, 116, 98, 128)142      drop7 = self.dropout(conv7, keep_prob=self.keep_prob, scope_name="drop7")143      conv8 = self.conv2d_relu(drop7, filter_shape=[3, 3, 128, 128], scope_name="conv8")  # (b, 116, 98, 128)144      drop8 = self.dropout(conv8, keep_prob=self.keep_prob, scope_name="drop8")145      up2 = self.upsample(drop8, scope_name="up2", factor=[2, 2])  # (b, 232, 196, 128)146      deconv2 = self.deconv2d(up2, filter_shape=[2, 2], num_outputs=64, scope_name="deconv2")  # (b, 232, 196, 64)147      concat2 = tf.concat([drop2, deconv2], axis=3)  # (b, 232, 196, 128)148      conv9 = self.conv2d_relu(concat2, filter_shape=[3, 3, 128, 64], scope_name="conv9")  # (b, 232, 196, 64)149      drop9 = self.dropout(conv9, keep_prob=self.keep_prob, scope_name="drop9")150      conv10 = self.conv2d_relu(drop9, filter_shape=[3, 3, 64, 64], scope_name="conv10")  # (b, 232, 196, 64)151      drop10 = self.dropout(conv10, keep_prob=self.keep_prob, scope_name="drop10")152      conv11 = self.conv2d(drop10, filter_shape=[1, 1, 64, 1], scope_name="conv11")  # (b, 232, 196, 1)153      out = tf.identity(conv11, name="out")154    return out155class MetaUNet(NeuralNetwork):156  def __init__(self, input_shape, keep_prob, output_shape, scope_name="metaunet"):157    self.input_shape = input_shape158    self.keep_prob = keep_prob159    self.output_shape = output_shape160    self.scope_name = scope_name161  def build_graph(self, input):162    with tf.variable_scope(self.scope_name):163      # Conv164      conv1 = self.conv2d_relu(input, filter_shape=[3, 3, 5, 32], scope_name="conv1")  # (b, 232, 196, 64)165      drop1 = self.dropout(conv1, keep_prob=self.keep_prob, scope_name="drop1")166      conv2 = self.conv2d_relu(drop1, filter_shape=[3, 3, 32, 32], scope_name="conv2")  # (b, 232, 196, 64)167      drop2 = self.dropout(conv2, keep_prob=self.keep_prob, scope_name="drop2")168      pool1 = self.maxpool2d(drop2, scope_name="pool1")  # (b, 116, 98, 64)169      conv3 = self.conv2d_relu(pool1, filter_shape=[3, 3, 32, 64], scope_name="conv3")  # (b, 116, 98, 128)170      drop3 = self.dropout(conv3, keep_prob=self.keep_prob, scope_name="drop3")171      conv4 = self.conv2d_relu(drop3, filter_shape=[3, 3, 64, 64], scope_name="conv4")  # (b, 116, 98, 128)172      drop4 = self.dropout(conv4, keep_prob=self.keep_prob, scope_name="drop4")173      pool2 = self.maxpool2d(conv4, scope_name="pool2")  # (b, 58, 49, 128)174      conv5 = self.conv2d_relu(pool2, filter_shape=[3, 3, 64, 128], scope_name="conv5")  # (b, 58, 49, 256)175      drop5 = self.dropout(conv5, keep_prob=self.keep_prob, scope_name="drop5")176      conv6 = self.conv2d_relu(drop5, filter_shape=[3, 3, 128, 128], scope_name="conv6")  # (b, 58, 49, 256)177      drop6 = self.dropout(conv6, keep_prob=self.keep_prob, scope_name="drop6")178      # Deconv179      up1 = self.upsample(drop6, scope_name="up1", factor=[2, 2])  # (b, 116, 98, 256)180      deconv1 = self.deconv2d(up1, filter_shape=[2, 2], num_outputs=64, scope_name="deconv1")  # (b, 116, 98, 128)181      concat1 = tf.concat([drop4, deconv1], axis=3)  # (b, 116, 98, 256)182      conv7 = self.conv2d_relu(concat1, filter_shape=[3, 3, 128, 64], scope_name="conv7")  # (b, 116, 98, 128)183      drop7 = self.dropout(conv7, keep_prob=self.keep_prob, scope_name="drop7")184      conv8 = self.conv2d_relu(drop7, filter_shape=[3, 3, 64, 64], scope_name="conv8")  # (b, 116, 98, 128)185      drop8 = self.dropout(conv8, keep_prob=self.keep_prob, scope_name="drop8")186      up2 = self.upsample(drop8, scope_name="up2", factor=[2, 2])  # (b, 232, 196, 128)187      deconv2 = self.deconv2d(up2, filter_shape=[2, 2], num_outputs=32, scope_name="deconv2")  # (b, 232, 196, 64)188      concat2 = tf.concat([drop2, deconv2], axis=3)  # (b, 232, 196, 128)189      conv9 = self.conv2d_relu(concat2, filter_shape=[3, 3, 64, 32], scope_name="conv9")  # (b, 232, 196, 64)190      drop9 = self.dropout(conv9, keep_prob=self.keep_prob, scope_name="drop9")191      conv10 = self.conv2d_relu(drop9, filter_shape=[3, 3, 32, 32], scope_name="conv10")  # (b, 232, 196, 64)192      drop10 = self.dropout(conv10, keep_prob=self.keep_prob, scope_name="drop10")193      conv11 = self.conv2d(drop10, filter_shape=[1, 1, 32, 1], scope_name="conv11")  # (b, 232, 196, 1)194      out = tf.identity(conv11, name="out")195      ...private_link_scope.py
Source:private_link_scope.py  
1# --------------------------------------------------------------------------------------------2# Copyright (c) Microsoft Corporation. All rights reserved.3# Licensed under the MIT License. See License.txt in the project root for license information.4# --------------------------------------------------------------------------------------------5from knack.log import get_logger6logger = get_logger(__name__)7# region Private Link Scope8def show_private_link_scope(client, resource_group_name, scope_name):9    return client.get(resource_group_name=resource_group_name,10                      scope_name=scope_name)11def delete_private_link_scope(client, resource_group_name, scope_name):12    return client.begin_delete(resource_group_name=resource_group_name,13                               scope_name=scope_name)14def list_private_link_scope(client, resource_group_name=None):15    if not resource_group_name:16        return client.list()17    return client.list_by_resource_group(resource_group_name=resource_group_name)18def create_private_link_scope(client, resource_group_name, scope_name, location='Global', tags=None):19    from azure.mgmt.monitor.models import AzureMonitorPrivateLinkScope20    private_link_scope = AzureMonitorPrivateLinkScope(location=location, tags=tags)21    return client.create_or_update(resource_group_name=resource_group_name,22                                   scope_name=scope_name,23                                   azure_monitor_private_link_scope_payload=private_link_scope)24def update_private_link_scope(client, resource_group_name, scope_name, tags):25    from azure.mgmt.monitor.models import TagsResource26    tags = TagsResource(tags=tags)27    return client.update_tags(resource_group_name=resource_group_name,28                              scope_name=scope_name,29                              private_link_scope_tags=tags)30# endregion31# region Private Link Scope Resource32def show_private_link_scope_resource(client, resource_group_name, scope_name, resource_name):33    return client.get(resource_group_name=resource_group_name,34                      scope_name=scope_name,35                      name=resource_name)36def delete_private_link_scope_resource(client, resource_group_name, scope_name, resource_name):37    return client.begin_delete(resource_group_name=resource_group_name,38                               scope_name=scope_name,39                               name=resource_name)40def list_private_link_scope_resource(client, resource_group_name, scope_name):41    return client.list_by_private_link_scope(resource_group_name=resource_group_name,42                                             scope_name=scope_name)43def create_private_link_scope_resource(client, resource_group_name, scope_name, resource_name,44                                       linked_resource_id):45    from azure.mgmt.monitor.models import ScopedResource46    scoped_resource = ScopedResource(linked_resource_id=linked_resource_id)47    return client.begin_create_or_update(resource_group_name=resource_group_name,48                                         scope_name=scope_name,49                                         name=resource_name,50                                         parameters=scoped_resource)51# endregion52# region Private Link Resource53def list_private_link_resource(client, resource_group_name, scope_name):54    return client.list_by_private_link_scope(resource_group_name=resource_group_name,55                                             scope_name=scope_name)56def show_private_link_resource(client, resource_group_name, scope_name, group_name):57    return client.get(resource_group_name=resource_group_name,58                      scope_name=scope_name,59                      group_name=group_name)60# endregion61# region Private Endpoint Connection62def show_private_endpoint_connection(client, resource_group_name, scope_name, private_endpoint_connection_name):63    return client.get(resource_group_name=resource_group_name,64                      scope_name=scope_name,65                      private_endpoint_connection_name=private_endpoint_connection_name)66def delete_private_endpoint_connection(client, resource_group_name, scope_name, private_endpoint_connection_name):67    return client.begin_delete(resource_group_name=resource_group_name,68                               scope_name=scope_name,69                               private_endpoint_connection_name=private_endpoint_connection_name)70def list_private_endpoint_connection(client, resource_group_name, scope_name):71    return client.list_by_private_link_scope(resource_group_name=resource_group_name,72                                             scope_name=scope_name)73# pylint: disable=line-too-long, unused-argument74def _update_private_endpoint_connection_status(cmd, client, resource_group_name, scope_name,75                                               private_endpoint_connection_name, is_approved=True, description=None):76    private_endpoint_connection = client.get(resource_group_name=resource_group_name, scope_name=scope_name,77                                             private_endpoint_connection_name=private_endpoint_connection_name)78    old_status = private_endpoint_connection.private_link_service_connection_state.status79    new_status = "Approved" if is_approved else "Rejected"80    if old_status == new_status:81        logger.warning('The status has been satisfied. Skip this command.')82        return None83    private_endpoint_connection.private_link_service_connection_state.status = new_status84    private_endpoint_connection.private_link_service_connection_state.description = description85    from azure.mgmt.monitor.models import PrivateEndpointConnection86    private_endpoint_connection = PrivateEndpointConnection(private_link_service_connection_state=private_endpoint_connection.private_link_service_connection_state)87    return client.begin_create_or_update(resource_group_name=resource_group_name,88                                         scope_name=scope_name,89                                         private_endpoint_connection_name=private_endpoint_connection_name,90                                         parameters=private_endpoint_connection)91def approve_private_endpoint_connection(cmd, client, resource_group_name, scope_name,92                                        private_endpoint_connection_name, description=""):93    return _update_private_endpoint_connection_status(94        cmd, client, resource_group_name=resource_group_name, scope_name=scope_name, is_approved=True,95        private_endpoint_connection_name=private_endpoint_connection_name, description=description96    )97def reject_private_endpoint_connection(cmd, client, resource_group_name, scope_name,98                                       private_endpoint_connection_name, description=""):99    return _update_private_endpoint_connection_status(100        cmd, client, resource_group_name=resource_group_name, scope_name=scope_name, is_approved=False,101        private_endpoint_connection_name=private_endpoint_connection_name, description=description102    )...name.py
Source:name.py  
1# This file is part of PeachPy package and is licensed under the Simplified BSD license.2#    See license.rst for the full text of the license.3import six4class Name:5    def __init__(self, name=None, prename=None):6        assert name is None or isinstance(name, str)7        assert prename is None or isinstance(prename, str)8        assert name is None or prename is None, \9            "Either name or prename, but not both, can be specified"10        self.name = name11        self.prename = prename12    def __str__(self):13        if self.name is not None:14            return self.name15        elif self.prename is not None:16            return "<" + self.prename + ">"17        else:18            return "<?>"19    def __repr__(self):20        return str(self)21    def __hash__(self):22        return hash(self.name) ^ id(self)23    def __eq__(self, other):24        return isinstance(other, Name) and (self is other or self.name == other.name)25    def __ne__(self, other):26        return not isinstance(other, Name) or (self is not other and self.name != other.name)27    @staticmethod28    def check_name(name):29        """Verifies that the name is appropriate for a symbol"""30        if not isinstance(name, str):31            raise TypeError("Invalid name %s: string required" % str(name))32        import re33        if not re.match("^[_a-zA-Z]\\w*$", name):34            raise ValueError("Invalid name: " + name)35        if name.startswith("__"):36            raise ValueError("Invalid name %s: names starting with __ are reserved for PeachPy purposes" % name)37class Namespace:38    def __init__(self, scope_name):39        assert scope_name is None or isinstance(scope_name, Name)40        # Name of the namespace.41        self.scope_name = scope_name42        # Map from name string to either Name or Namespace object43        self.names = dict()44        # Map from prename string to a set of Name and Namespace objects45        self.prenames = dict()46    def __str__(self):47        return str(self.scope_name)48    def __hash__(self):49        return hash(self.scope_name)50    def __eq__(self, other):51        return isinstance(other, Namespace) and self.scope_name == other.scope_name52    def __ne__(self, other):53        return not isinstance(other, Namespace) or self.scope_name != other.scope_name54    def add_scoped_name(self, scoped_name):55        assert isinstance(scoped_name, tuple)56        scope_name, subscoped_name = scoped_name[0], scoped_name[1:]57        assert isinstance(scope_name, Name)58        scope = scope_name59        if subscoped_name:60            scope = Namespace(scope_name)61            scope.add_scoped_name(subscoped_name)62        if scope_name.name:63            assert scope_name.prename is None64            if scope_name.name in self.names:65                if subscoped_name and isinstance(self.names[scope_name.name], Namespace):66                    self.names[scope_name.name].add_scoped_name(subscoped_name)67                else:68                    raise ValueError("Name %s already exists" % scope_name.name)69            else:70                self.names[scope_name.name] = scope71        else:72            assert scope_name.name is None73            self.prenames.setdefault(scope_name.prename, set())74            if subscoped_name:75                for subscope in iter(self.prenames[scope_name.prename]):76                    if isinstance(subscope, Namespace) and subscope.scope_name is scope_name:77                        subscope.add_scoped_name(subscoped_name)78                        return79            self.prenames[scope_name.prename].add(scope)80    def assign_names(self):81        # Step 1: assign names to symbols with prenames with no conflicts82        for prename in six.iterkeys(self.prenames):83            if prename is not None:84                if len(self.prenames[prename]) == 1 and prename not in self.names:85                    name_object = next(iter(self.prenames[prename]))86                    self.names[prename] = name_object87                    if isinstance(name_object, Namespace):88                        name_object = name_object.scope_name89                    name_object.name = prename90        # Step 2: assign names to symbols with conflicting prenames91        for prename, prename_objects in six.iteritems(self.prenames):92            if prename is not None:93                suffix = 094                suffixed_name = prename + str(suffix)95                for name_object in iter(prename_objects):96                    # Check that the name wasn't already assigned at Step 197                    if name_object.name is None:98                        # Generate a non-conflicting name by appending a suffix99                        while suffixed_name in self.names:100                            suffix += 1101                            suffixed_name = prename + str(suffix)102                        self.names[suffixed_name] = name_object103                        if isinstance(name_object, Namespace):104                            name_object = name_object.scope_name105                        name_object.name = suffixed_name106        # Step 3: assign names to symbols without prenames107        if None in self.prenames:108            unnamed_objects = self.prenames[None]109            suffix = 0110            suffixed_name = "__local" + str(suffix)111            for name_object in iter(unnamed_objects):112                # Generate a non-conflicting name by appending a suffix113                while suffixed_name in self.names:114                    suffix += 1115                    suffixed_name = "__local" + str(suffix)116                self.names[suffixed_name] = name_object117                if isinstance(name_object, Namespace):118                    name_object = name_object.scope_name119                name_object.name = suffixed_name120        pass121    @property122    def name(self):123        return self.scope_name.name124    @property125    def prename(self):...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
