Best Python code snippet using tavern
WaveNetWrapper.py
Source:WaveNetWrapper.py  
...119    def init_hidden(self, batch_size=1):120        return None121    def parameters(self):122        return self.model.parameters()123# def __deepcopy__(self, memo):124#     """125#     Fix the deepcopy operation with WeigthNorm layers by removing all126#     during copying. The code was posted as a solution at127#     https://github.com/pytorch/pytorch/issues/28594128#     """129#     # save and delete all weightnorm weights on self130#     weights = {}131#     for hook in self._forward_pre_hooks.values():132#         if isinstance(hook, WeightNorm):133#             weights[hook.name] = getattr(self, hook.name)134#             delattr(self, hook.name)135#     # remove this deepcopy method, restoring the object's original one if necessary136#     __deepcopy__ = self.__deepcopy__137#     if orig_deepcopy:138#         self.__deepcopy__ = orig_deepcopy139#     else:140#         del self.__deepcopy__141#     # actually do the copy142#     result = copy.deepcopy(self)143#     # restore weights and method on self144#     for name, value in weights.items():145#         setattr(self, name, value)146#     self.__deepcopy__ = __deepcopy__147#     return result148for layer in [Conv1d, ConvTranspose2d]:149    orig_deepcopy = getattr(layer, '__deepcopy__', None)150    def __deepcopy__(self, memo):151        """152        Fix the deepcopy operation with WeigthNorm layers by removing all153        during copying. The code was posted as a solution at154        https://github.com/pytorch/pytorch/issues/28594155        """156        # save and delete all weightnorm weights on self157        weights = {}158        for hook in self._forward_pre_hooks.values():159            if isinstance(hook, WeightNorm):160                weights[hook.name] = getattr(self, hook.name)161                delattr(self, hook.name)162        # remove this deepcopy method, restoring the object's original one if necessary163        __deepcopy__ = self.__deepcopy__164        if orig_deepcopy:...tcnlib.py
Source:tcnlib.py  
...3from torch.nn.utils import weight_norm4from torch.nn.utils.weight_norm import WeightNorm5import copy6orig_deepcopy = getattr(nn.Conv1d, '__deepcopy__', None)7def __deepcopy__(self, memo):8    # save and delete all weightnorm weights on self9    weights = {}10    for hook in self._forward_pre_hooks.values():11        if isinstance(hook, WeightNorm):12            weights[hook.name] = getattr(self, hook.name)13            delattr(self, hook.name)14    # remove this deepcopy method, restoring the object's original one if necessary15    __deepcopy__ = self.__deepcopy__16    if orig_deepcopy:17        self.__deepcopy__ = orig_deepcopy18    else:19        del self.__deepcopy__20    # actually do the copy21    result = copy.deepcopy(self)...utils.py
Source:utils.py  
1#!/usr/bin/env python32# Copyright (c) Meta Platforms, Inc. and affiliates.3# All rights reserved.4#5# This source code is licensed under the BSD-style license found in the6# LICENSE file in the root directory of this source tree.7from collections import OrderedDict8from typing import Optional, List, Set, Union9import torch10from torchrec.distributed.types import ShardedModule11def append_prefix(prefix: str, name: str) -> str:12    """13    Appends provided prefix to provided name.14    """15    if prefix != "" and name != "":16        return prefix + "." + name17    else:18        return prefix + name19def filter_state_dict(20    state_dict: "OrderedDict[str, torch.Tensor]", name: str21) -> "OrderedDict[str, torch.Tensor]":22    """23    Filters state dict for keys that start with provided name.24    Strips provided name from beginning of key in the resulting state dict.25    Args:26        state_dict (OrderedDict[str, torch.Tensor]): input state dict to filter.27        name (str): name to filter from state dict keys.28    Returns:29        OrderedDict[str, torch.Tensor]: filtered state dict.30    """31    filtered_state_dict = OrderedDict()32    for key, value in state_dict.items():33        if key.startswith(name):34            # + 1 to length is to remove the '.' after the key35            filtered_state_dict[key[len(name) + 1 :]] = value36    return filtered_state_dict37def _get_unsharded_module_names_helper(38    model: torch.nn.Module,39    path: str,40    unsharded_module_names: Set[str],41) -> bool:42    sharded_children = set()43    for name, child in model.named_children():44        curr_path = path + name45        if isinstance(child, ShardedModule):46            sharded_children.add(name)47        else:48            child_sharded = _get_unsharded_module_names_helper(49                child,50                curr_path + ".",51                unsharded_module_names,52            )53            if child_sharded:54                sharded_children.add(name)55    if len(sharded_children) > 0:56        for name, _ in model.named_children():57            if name not in sharded_children:58                unsharded_module_names.add(path + name)59    return len(sharded_children) > 060def get_unsharded_module_names(model: torch.nn.Module) -> List[str]:61    """62    Retrieves names of top level modules that do not contain any sharded sub-modules.63    Args:64        model (torch.nn.Module): model to retrieve unsharded module names from.65    Returns:66        List[str]: list of names of modules that don't have sharded sub-modules.67    """68    unsharded_module_names: Set[str] = set()69    _get_unsharded_module_names_helper(70        model,71        "",72        unsharded_module_names,73    )74    return list(unsharded_module_names)75class sharded_model_copy:76    """77    Allows copying of DistributedModelParallel module to a target device.78    Example::79        # Copying model to CPU.80        m = DistributedModelParallel(m)81        with sharded_model_copy("cpu"):82                m_cpu = copy.deepcopy(m)83    """84    def __init__(self, device: Optional[Union[str, int, torch.device]]) -> None:85        self.device = device86    def __enter__(self) -> None:87        # pyre-ignore [16]88        self.t_copy_save_ = torch.Tensor.__deepcopy__89        # pyre-ignore [16]90        self.p_copy_save_ = torch.nn.Parameter.__deepcopy__91        device = self.device92        # pyre-ignore [2, 3, 53]93        def _tensor_copy(tensor, memo):94            if tensor.device != device:95                return tensor.detach().to(device)96            else:97                return tensor.detach().clone()98        # pyre-ignore [2, 3]99        def _no_copy(obj, memo):100            return obj101        _copy_or_not = _tensor_copy if self.device is not None else _no_copy102        # pyre-ignore [2, 3, 53]103        def _param_copy(param, memo):104            return torch.nn.Parameter(105                _copy_or_not(param, memo), requires_grad=param.requires_grad106            )107        # pyre-ignore [16]108        torch.Tensor.__deepcopy__ = _copy_or_not109        torch.nn.Parameter.__deepcopy__ = _param_copy110        torch._C._distributed_c10d.ProcessGroupNCCL.__deepcopy__ = _no_copy111        torch._C._distributed_c10d.ProcessGroupGloo.__deepcopy__ = _no_copy112        torch._C._distributed_c10d.Work.__deepcopy__ = _no_copy113        # pyre-ignore [16]114        torch.cuda.streams.Stream.__deepcopy__ = _no_copy115    # pyre-ignore [2]116    def __exit__(self, exc_type, exc_val, exc_tb) -> None:117        # pyre-ignore [16]118        torch.Tensor.__deepcopy__ = self.t_copy_save_119        # pyre-ignore [16]120        torch.nn.Parameter.__deepcopy__ = self.p_copy_save_121        torch._C._distributed_c10d.ProcessGroupNCCL.__deepcopy__ = None122        torch._C._distributed_c10d.ProcessGroupGloo.__deepcopy__ = None123        torch._C._distributed_c10d.Work.__deepcopy__ = None124        # pyre-ignore [16]...copy.py
Source:copy.py  
1from copy import deepcopy2from .deco import accepts3def empty_copy(obj):4    """Create empty copy of object.5    Parameters6    ----------7    obj : some python object8    Returns9    -------10    obj :11        Empty copy of obj.12    """13    class Empty(obj.__class__):14        def __init__(self):15            pass16    newcopy = Empty()17    newcopy.__class__ = obj.__class__18    return newcopy19@accepts("s", (list, tuple))20def deepcopy_with_sharing(obj, shared_attributes, memo=None):21    """Deepcopy an object, except for a given list of attributes.22    Those atttributes are shared between the original object and its copy.From:23    https://stackoverflow.com/q/150071824    Parameters25    ----------26    obj: some object27    shared_attributes : list28        A list of strings identifying the attributes that sould be shared29        between the original and its copy.30    memo : dict31        The dictionary passed into __deepcopy__.  Ignore this argument if32        not calling from within __deepcopy__.33    """34    shared_attributes = {k: getattr(obj, k) for k in shared_attributes}35    if hasattr(obj, '__deepcopy__'):36        # Do hack to prevent infinite recursion in call to deepcopy37        deepcopy_method = obj.__deepcopy__38        obj.__deepcopy__ = None39    for attr in shared_attributes:40        try:41            del obj.__dict__[attr]42        except KeyError:43            pass44    clone = deepcopy(obj)45    for attr, val in shared_attributes.items():46        setattr(obj, attr, val)47        setattr(clone, attr, val)48    if hasattr(obj, '__deepcopy__'):49        # Undo hack50        obj.__deepcopy__ = deepcopy_method51        del clone.__deepcopy__52    return clone53@accepts("s", list)54def create_clone(obj, keep_attributes, sharing=False):55    """Create clone of object.56    Attributes in keep_attributes are deepcopied, all other discarded.57    """58    del_attributes = [item for item in obj.__dict__.keys() if item not in59                      keep_attributes]60    clone = deepcopy_with_sharing(obj, shared_attributes=del_attributes,61                                  memo=None)62    if sharing is False:63        for attr in del_attributes:64            if attr in obj.__dict__.keys():65                clone.__dict__[attr] = None...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
