Best Python code snippet using pandera_python
check_utils.py
Source:check_utils.py  
...11        ("multiindex_types", Tuple[type, ...]),12    ),13)14@lru_cache(maxsize=None)15def _supported_types():16    # pylint: disable=import-outside-toplevel17    table_types = [pd.DataFrame]18    field_types = [pd.Series]19    index_types = [pd.Index]20    multiindex_types = [pd.MultiIndex]21    try:22        import databricks.koalas as ks23        table_types.append(ks.DataFrame)24        field_types.append(ks.Series)25        index_types.append(ks.Index)26        multiindex_types.append(ks.MultiIndex)27    except ImportError:28        pass29    try:  # pragma: no cover30        import modin.pandas as mpd31        table_types.append(mpd.DataFrame)32        field_types.append(mpd.Series)33        index_types.append(mpd.Index)34        multiindex_types.append(mpd.MultiIndex)35    except ImportError:36        pass37    try:38        import dask.dataframe as dd39        table_types.append(dd.DataFrame)40        field_types.append(dd.Series)41        index_types.append(dd.Index)42    except ImportError:43        pass44    return SupportedTypes(45        tuple(table_types),46        tuple(field_types),47        tuple(index_types),48        tuple(multiindex_types),49    )50def is_table(obj):51    """Verifies whether an object is table-like.52    Where a table is a 2-dimensional data matrix of rows and columns, which53    can be indexed in multiple different ways.54    """55    return isinstance(obj, _supported_types().table_types)56def is_field(obj):57    """Verifies whether an object is field-like.58    Where a field is a columnar representation of data in a table-like59    data structure.60    """61    return isinstance(obj, _supported_types().field_types)62def is_index(obj):63    """Verifies whether an object is a table index."""64    return isinstance(obj, _supported_types().index_types)65def is_multiindex(obj):66    """Verifies whether an object is a multi-level table index."""67    return isinstance(obj, _supported_types().multiindex_types)68def is_supported_check_obj(obj):69    """Verifies whether an object is table- or field-like."""70    return is_table(obj) or is_field(obj)71def prepare_series_check_output(72    check_obj: Union[pd.Series, pd.DataFrame],73    check_output: pd.Series,74    ignore_na: bool = True,75    n_failure_cases: Optional[int] = None,76) -> Tuple[pd.Series, pd.Series]:77    """Prepare the check output and failure cases for a Series check output.78    check_obj can be a dataframe, since a check function can potentially return79    a Series resulting from applying some check function that outputs a Series.80    """81    if ignore_na:...aggregate_ops_test.py
Source:aggregate_ops_test.py  
...26  # after which it adds the remaining (N - M) tensors 8 at a time in a loop.27  # Test N in [1, 10] so we check each special-case from 1 to 9 and one28  # iteration of the loop.29  _MAX_N = 1030  def _supported_types(self):31    if test.is_gpu_available():32      return [dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64,33              dtypes.complex128]34    return [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64,35            dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64,36            dtypes.complex128]37  def _buildData(self, shape, dtype):38    data = np.random.randn(*shape).astype(dtype.as_numpy_dtype)39    # For complex types, add an index-dependent imaginary component so we can40    # tell we got the right value.41    if dtype.is_complex:42      return data + 10j * data43    return data44  def testAddN(self):45    np.random.seed(12345)46    with self.test_session(use_gpu=True) as sess:47      for dtype in self._supported_types():48        for count in range(1, self._MAX_N + 1):49          data = [self._buildData((2, 2), dtype) for _ in range(count)]50          actual = sess.run(math_ops.add_n(data))51          expected = np.sum(np.vstack(52              [np.expand_dims(d, 0) for d in data]), axis=0)53          tol = 5e-3 if dtype == dtypes.float16 else 5e-754          self.assertAllClose(expected, actual, rtol=tol, atol=tol)55  def testUnknownShapes(self):56    np.random.seed(12345)57    with self.test_session(use_gpu=True) as sess:58      for dtype in self._supported_types():59        data = self._buildData((2, 2), dtype)60        for count in range(1, self._MAX_N + 1):61          data_ph = array_ops.placeholder(dtype=dtype)62          actual = sess.run(math_ops.add_n([data_ph] * count), {data_ph: data})63          expected = np.sum(np.vstack([np.expand_dims(data, 0)] * count),64                            axis=0)65          tol = 5e-3 if dtype == dtypes.float16 else 5e-766          self.assertAllClose(expected, actual, rtol=tol, atol=tol)67if __name__ == "__main__":..._serialize.py
Source:_serialize.py  
1"""2packages data into the raw format the clearvolume client expects3author: Martin Weigert4email: mweigert@mpi-cbg.de5"""6from __future__ import absolute_import7from __future__ import print_function8import numpy as np9import six10from six.moves import zip11DEFAULT_METADATA = {12    "index": 0,13    "time": 0,14    "channel": 0,15    "channelname": "python source",16    "viewmatrix": "1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.",17    "dim": 3,18    "color": (1., 1., 1., 1.),19    "type": "UnsignedShort",20    "bytespervoxel": 2,21    "elementsize": 1,22    "voxelwidth": 1,23    "voxelheight": 1,24    "voxeldepth": 1,25    "realunit": 126}27_SUPPORTED_TYPES = {np.uint8: "UnsignedByte",28                    np.uint16: "UnsignedShort"}29def _serialize_data(data, meta=DEFAULT_METADATA):30    """returns serialized version of data for clearvolume data viewer"""31    if not isinstance(data, np.ndarray):32        raise TypeError("data should be a numpy array (but is %s)" % type(data))33    if not data.dtype.type in _SUPPORTED_TYPES:34        raise ValueError("data type should be in (%s) (but is %s)" % (list(_SUPPORTED_TYPES.keys()), data.dtype))35    LenInt64 = len(np.int64(1).tostring())36    Ns = data.shape37    metaData = DEFAULT_METADATA.copy()38    # prepare header....39    metaData["type"] = _SUPPORTED_TYPES[data.dtype.type]40    for attrName, N in zip(["width", "height", "depth"], Ns[::-1]):41        metaData[attrName] = meta.get(attrName, N)42    for key, val in six.iteritems(meta):43        if key not in metaData:44            raise KeyError(" '%s' (= %s) as is an unknown property!" % (key, val))45        else:46            metaData[key] = val47    print(metaData)48    keyValPairs = [str(key) + ":" + str(val) for key, val in six.iteritems(metaData)]49    headerStr = ",".join(keyValPairs)50    headerStr = "[" + headerStr + "]"51    # headerStr = str(metaData).replace("{","[").replace("}","]").replace("'",'')#.replace(" ",'')52    headerLength = len(headerStr)53    dataStr = data.tostring()54    dataLength = len(dataStr)55    neededBufferLength = 3 * LenInt64 + headerLength + dataLength56    return "%s%s%s%s%s" % (np.int64(neededBufferLength).tostring(), np.int64(headerLength).tostring(), headerStr,57                           np.int64(dataLength).tostring(), dataStr)58if __name__ == '__main__':59    Ns = [1, 2, 3]60    d = (123 * np.linspace(0, 200, np.prod(Ns))).reshape(Ns).astype(np.uint8)61    # dStr = _serialize_data(d,{"width": 5.,"color":"1. .5 .2 1."})62    dStr = _serialize_data(d, {"width": "5", "color": "1. .5 .2 1."})...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
