Best Python code snippet using pandera_python
dtypes.py
Source:dtypes.py  
...293        return "timedelta"294###############################################################################295# Utilities296###############################################################################297def is_subdtype(298    arg1: Union[DataType, Type[DataType]],299    arg2: Union[DataType, Type[DataType]],300) -> bool:301    """Returns True if first argument is lower/equal in DataType hierarchy."""302    arg1_cls = arg1 if inspect.isclass(arg1) else arg1.__class__303    arg2_cls = arg2 if inspect.isclass(arg2) else arg2.__class__304    return issubclass(arg1_cls, arg2_cls)  # type: ignore305def is_int(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:306    """Return True if :class:`pandera.dtypes.DataType` is an integer."""307    return is_subdtype(pandera_dtype, Int)308def is_uint(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:309    """Return True if :class:`pandera.dtypes.DataType` is310    an unsigned integer."""311    return is_subdtype(pandera_dtype, UInt)312def is_float(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:313    """Return True if :class:`pandera.dtypes.DataType` is a float."""314    return is_subdtype(pandera_dtype, Float)315def is_complex(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:316    """Return True if :class:`pandera.dtypes.DataType` is a complex number."""317    return is_subdtype(pandera_dtype, Complex)318def is_numeric(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:319    """Return True if :class:`pandera.dtypes.DataType` is a complex number."""320    return is_subdtype(pandera_dtype, _Number)321def is_bool(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:322    """Return True if :class:`pandera.dtypes.DataType` is a boolean."""323    return is_subdtype(pandera_dtype, Bool)324def is_string(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:325    """Return True if :class:`pandera.dtypes.DataType` is a string."""326    return is_subdtype(pandera_dtype, String)327def is_category(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:328    """Return True if :class:`pandera.dtypes.DataType` is a category."""329    return is_subdtype(pandera_dtype, Category)330def is_datetime(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:331    """Return True if :class:`pandera.dtypes.DataType` is a datetime."""332    return is_subdtype(pandera_dtype, DateTime)333def is_timedelta(pandera_dtype: Union[DataType, Type[DataType]]) -> bool:334    """Return True if :class:`pandera.dtypes.DataType` is a timedelta."""...utils.py
Source:utils.py  
...14    dtype_groups = column_series.groupby(dataframe.dtypes).groups15    if dtype_filter is None:16        dtype_filter = null_filter17    return {k.name: v for k, v in dtype_groups.items() if dtype_filter(k.name)}18def is_subdtype(dtype1, dtype2):19    if isinstance(dtype1, six.string_types):20        try:21            dtype1 = np.dtype(dtype1)22        except TypeError:23            return False24    return np.issubdtype(dtype1, dtype2)25def is_ordinal(dtype):26    return is_subdtype(dtype, np.integer)27def is_continous(dtype):28    return is_subdtype(dtype, np.number) and not is_ordinal(dtype)29def is_numeric(dtype):30    return is_subdtype(dtype, np.number)31def is_categorical(dtype):32    return not is_numeric(dtype)33def ordinal_columns(dataframe):34    return unflatten_list(dtype_dict(dataframe, is_ordinal).values())35def continous_columns(dataframe):36    return unflatten_list(dtype_dict(dataframe, is_continous).values())37def numeric_columns(dataframe):38    return unflatten_list(dtype_dict(dataframe, is_numeric).values())39def categorical_columns(dataframe):40    return unflatten_list(dtype_dict(dataframe, is_categorical).values())41def mean_impute_numerics(dataframe):42    numerics = dataframe.values43    # impute with mean44    imputer = Imputer(strategy='mean', missing_values='NaN')...test_validators.py
Source:test_validators.py  
...56    v = in_bounds((0, 5), closed=closed)57    expected = f"<in_bounds validator with bounds {interval_str}>"58    assert repr(v) == expected59def test_is_subdtype_success(simple_attr):60    v = is_subdtype(np.number)61    # nothing happends62    v(None, simple_attr, np.array([1, 2, 3]))63    v(None, simple_attr, np.array([1.0, 2.0, 3.0]))64def test_is_subdtype_fail(simple_attr):65    v = is_subdtype(np.number)66    with pytest.raises(TypeError, match=r".*not a sub-dtype of.*"):67        v(None, simple_attr, np.array(["1", "2", "3"]))68def test_is_subdtype_repr():69    v = is_subdtype(np.number)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
