Best Python code snippet using localstack_python
test_datasets.py
Source:test_datasets.py  
...19            'test': (test_examples, num_features),20        }21    )22    23    check_attributes(24        data_dir, 'adult', {25            'task': 'classification',26            'num_classes': 2,27        }28    )29    30    validate_dataset_file(data_dir / 'adult.npz')31@pytest.mark.dataset32def test_amazon(data_dir):33    num_features = 934    train_examples = 26_21535    test_examples = 6_55436    37    check_split_sizes(38        data_dir, 'amazon', {39            'train': (train_examples, num_features),40            'test': (test_examples, num_features),41        }42    )43    44    check_attributes(45        data_dir, 'amazon', {46            'task': 'classification',47            'num_classes': 2,48        }49    )50    51    validate_dataset_file(data_dir / 'amazon.npz')52@pytest.mark.dataset53def test_arcene(data_dir):54    train_test_shape = (100, 10_000)55    56    check_split_sizes(57        data_dir, 'arcene', {58            'train': train_test_shape,59            'test': train_test_shape,  # arcene's "official" validation set used as test set60        }61    )62    63    check_attributes(64        data_dir, 'arcene', {65            'task': 'classification',66            'num_classes': 2,67        }68    )69    70    validate_dataset_file(data_dir / 'arcene.npz')71@pytest.mark.dataset72@pytest.mark.large73def test_cifar10(data_dir):74    num_features = 32 * 32 * 375    76    check_split_sizes(77        data_dir, 'cifar10', {78            'train': (50_000, num_features),79            'test': (10_000, num_features),80        }81    )82    83    check_attributes(84        data_dir, 'cifar10', {85            'task': 'classification',86            'num_classes': 10,87        }88    )89    90    validate_dataset_file(data_dir / 'cifar10.npz')91@pytest.mark.dataset92def test_covertype(data_dir):93    num_features = 5494    95    check_split_sizes(96        data_dir, 'covertype', {97            'train': (11_340, num_features),98            'valid': (3_780, num_features),99            'test': (565_892, num_features),100        }101    )102    103    check_attributes(104        data_dir, 'covertype', {105            'task': 'classification',106            'num_classes': 7,107        }108    )109    110    validate_dataset_file(data_dir / 'covertype.npz')111@pytest.mark.dataset112@pytest.mark.large113def test_duolingo_original(data_dir):114    num_features = 10115    116    check_split_sizes(117        data_dir, 'duolingo-original', {118            'train': (10_275_881, num_features),119            'test': (2_578_345, num_features),120        }121    )122    123    check_attributes(124        data_dir, 'duolingo-original', {125            'task': 'regression',126        }127    )128    129    validate_dataset_file(data_dir / 'duolingo-original.npz')130@pytest.mark.dataset131@pytest.mark.large132def test_duolingo_categorical(data_dir):133    num_features = 10134    135    check_split_sizes(136        data_dir, 'duolingo-categorical', {137            'train': (10_275_881, num_features),138            'test': (2_578_345, num_features),139        }140    )141    142    check_attributes(143        data_dir, 'duolingo-categorical', {144            'task': 'regression',145        }146    )147    148    validate_dataset_file(data_dir / 'duolingo-categorical.npz')149@pytest.mark.dataset150@pytest.mark.large151def test_higgs(data_dir):152    num_features = 28153    154    check_split_sizes(155        data_dir, 'higgs', {156            'train': (10_500_000, num_features),157            'test': (500_000, num_features),158        }159    )160    161    check_attributes(162        data_dir, 'higgs', {163            'task': 'classification',164            'num_classes': 2,165        }166    )167    168    validate_dataset_file(data_dir / 'higgs.npz')169@pytest.mark.dataset170def test_musk(data_dir):171    num_features = 166172    train_examples = 5548173    test_examples = 1050174    175    check_split_sizes(176        data_dir, 'musk', {177            'train': (train_examples, num_features),178            'test': (test_examples, num_features),179        }, )180    181    check_attributes(182        data_dir, 'musk', {183            'task': 'classification',184            'num_outputs': 1,185            'num_classes': 2,186        }187    )188    189    validate_dataset_file(data_dir / 'musk.npz')190@pytest.mark.dataset191def test_parkinsons(data_dir):192    num_features = 16193    num_outputs = 2194    train_examples = 4646195    test_examples = 1229196    197    check_split_sizes(198        data_dir, 'parkinsons', {199            'train': (train_examples, num_features, num_outputs),200            'test': (test_examples, num_features, num_outputs),201        }, )202    203    check_attributes(204        data_dir, 'parkinsons', {205            'task': 'regression',206            'num_outputs': 2,207        }208    )209    210    validate_dataset_file(data_dir / 'parkinsons.npz')211@pytest.mark.dataset212def test_poker(data_dir):213    num_features = 10214    215    check_split_sizes(216        data_dir, 'poker', {217            'train': (25_010, num_features),218            'test': (1_000_000, num_features),219        }220    )221    222    check_attributes(223        data_dir, 'poker', {224            'task': 'classification',225            'num_classes': 10,226        }227    )228    229    validate_dataset_file(data_dir / 'poker.npz')230@pytest.mark.dataset231def test_rossman(data_dir):232    num_features = 18233    train_examples = 814_688234    test_examples = 202_521235    236    check_split_sizes(237        data_dir, 'rossman', {238            'train': (train_examples, num_features),239            'test': (test_examples, num_features),240        }241    )242    243    check_attributes(244        data_dir, 'rossman', {245            'task': 'regression',246        }247    )248    ...test_models.py
Source:test_models.py  
...5nd = 2006X = np.random.uniform(low=0, high=30, size=(nx, nd)).astype(np.float32)7sf = np.ones(nx)8cond = np.random.randint(3, size=nx).astype(np.float32)9def check_attributes(model, ce=False, cd=False, c=False, sf=False):10    assert model._conditional_encoder() == ce11    assert model._conditional_decoder() == cd12    assert model._use_conditions() == c13    assert model._use_sf() == sf14def test_autoencoder():15    lat_dim = 1816    ae = Autoencoder(x_dim=X.shape[1], latent_dim=lat_dim)17    ae.compile(optimizer="adam", loss="mse", run_eagerly=False)18    check_attributes(ae)19    ae.fit(X, batch_size=50, epochs=1)20    lat = ae.transform(X)21    assert X.shape[0] == lat.shape[0]22    assert lat.shape[1] == lat_dim23    rec = ae.predict(X)24    assert rec.shape == X.shape25def test_conditional_autoencoder():26    ae = Autoencoder(x_dim=X.shape[1], conditional="all")27    ae.compile(optimizer="adam", loss="mse", run_eagerly=True)28    check_attributes(ae, ce=True, cd=True, c=True)29    ae.fit([X, cond], batch_size=50, epochs=1)30    lat = ae.transform([X, cond])31    assert X.shape[0] == lat.shape[0]32    rec = ae.predict([X, cond])33    assert rec.shape == X.shape34    ae = Autoencoder(x_dim=X.shape[1], conditional="first")35    ae.compile(optimizer="adam", loss="mse", run_eagerly=False)36    check_attributes(ae, ce=True, cd=True, c=True)37    ae.fit([X, cond], batch_size=50, epochs=1)38    lat = ae.transform([X, cond])39    assert X.shape[0] == lat.shape[0]40    rec = ae.predict([X, cond])41    assert rec.shape == X.shape42def test_poisson_autoencoder():43    ae = PoissonAutoencoder(x_dim=X.shape[1])44    ae.compile(optimizer="adam", loss="mse", run_eagerly=False)45    check_attributes(ae, sf=True)46    ae.fit([X, sf], batch_size=50, epochs=1)47    lat = ae.transform(X)48    assert X.shape[0] == lat.shape[0]49    rec = ae.predict([X, sf])50    assert rec.shape == X.shape51def test_nb_autoencoder():52    ae = NegativeBinomialAutoencoder(x_dim=X.shape[1], dispersion="gene")53    ae.compile(optimizer="adam", run_eagerly=False)54    check_attributes(ae, sf=True)55    ae.fit([X, sf], batch_size=50, epochs=1)56    lat = ae.transform(X)57    assert X.shape[0] == lat.shape[0]58    rec = ae.predict([X, sf])59    assert rec.shape == X.shape60def test_conditional_zinb_autoencoder():61    ae = NegativeBinomialAutoencoder(62        x_dim=X.shape[1], dispersion="constant", conditional="all"63    )64    ae.compile(optimizer="adam", run_eagerly=True)65    check_attributes(ae, ce=True, cd=True, c=True, sf=True)66    ae.fit([X, cond, sf], batch_size=50, epochs=1)67    lat = ae.transform([X, cond])68    assert X.shape[0] == lat.shape[0]69    rec = ae.predict([X, cond, sf])70    assert rec.shape == X.shape71def test_topological_autoencoder():72    ae = TopologicalAutoencoder(x_dim=X.shape[1])73    ae.compile(optimizer="adam", run_eagerly=True)74    check_attributes(ae)75    ae.fit(X, batch_size=50, epochs=1)76    lat = ae.transform(X)77    assert X.shape[0] == lat.shape[0]78    rec = ae.predict(X)79    assert rec.shape == X.shape80def test_variational_autoencoder():81    ae = VariationalAutoencoder(x_dim=X.shape[1])82    ae.compile(optimizer="adam", run_eagerly=False)83    check_attributes(ae)84    ae.fit(X, batch_size=50, epochs=1)85    lat = ae.transform(X)86    assert X.shape[0] == lat.shape[0]87    rec = ae.predict(X)88    assert rec.shape == X.shape89    ae = VariationalAutoencoder(x_dim=X.shape[1], latent_dist="multivariate")90    ae.compile(optimizer="adam", run_eagerly=False)91    check_attributes(ae)92    ae.fit(X, batch_size=50, epochs=1)93    lat = ae.transform(X)94    assert X.shape[0] == lat.shape[0]95    rec = ae.predict(X)96    assert rec.shape == X.shape97    ae = VariationalAutoencoder(x_dim=X.shape[1], prior="iaf", iaf_units=[128, 128])98    ae.compile(optimizer="adam", run_eagerly=False)99    check_attributes(ae)100    ae.fit(X, batch_size=50, epochs=1)101    lat = ae.transform(X)102    assert X.shape[0] == lat.shape[0]103    rec = ae.predict(X)104    assert rec.shape == X.shape105    ae = VariationalAutoencoder(x_dim=X.shape[1], prior="vamp", n_pseudoinputs=30)106    ae.compile(optimizer="adam", run_eagerly=False)107    check_attributes(ae)108    ae.fit(X, batch_size=50, epochs=1)109    lat = ae.transform(X)110    assert X.shape[0] == lat.shape[0]111    rec = ae.predict(X)112    assert rec.shape == X.shape113def test_conditional_variational_autoencoder():114    ae = VariationalAutoencoder(x_dim=X.shape[1], conditional="all")115    ae.compile(optimizer="adam", run_eagerly=True)116    check_attributes(ae, ce=True, cd=True, c=True)117    ae.fit([X, cond], batch_size=50, epochs=1)118    lat = ae.transform([X, cond])119    assert X.shape[0] == lat.shape[0]120    rec = ae.predict([X, cond])121    assert rec.shape == X.shape122def test_negative_binomial_variational_autoencoder():123    ae = NegativeBinomialVAE(x_dim=X.shape[1], dispersion="cell-gene")124    ae.compile(optimizer="adam", run_eagerly=False)125    check_attributes(ae, sf=True)126    ae.fit([X, sf], batch_size=50, epochs=1)127    lat = ae.transform(X)128    assert X.shape[0] == lat.shape[0]129    rec = ae.predict([X, sf])...user_config_reader.py
Source:user_config_reader.py  
...23        empty_string_check(self._config_dict['@id'])24        25        # Query Generator26        empty_string_check(self._config_dict['queryGenerator']['@class'])27        check_attributes(self._config_dict['queryGenerator'])28        29        # Snippet Classifier30        empty_string_check(self._config_dict['textClassifiers']['snippetClassifier']['@class'])31        check_attributes(self._config_dict['textClassifiers']['snippetClassifier'])32        33        # Document Classifier34        empty_string_check(self._config_dict['textClassifiers']['documentClassifier']['@class'])35        check_attributes(self._config_dict['textClassifiers']['documentClassifier'])36        37        # Stopping Decision Maker38        empty_string_check(self._config_dict['stoppingDecisionMaker']['@class'])39        check_attributes(self._config_dict['stoppingDecisionMaker'])40        41        # Logger42        empty_string_check(self._config_dict['logger']['@class'])43        check_attributes(self._config_dict['logger'])44        45        # Search Context46        empty_string_check(self._config_dict['searchContext']['@class'])47        check_attributes(self._config_dict['searchContext'])48        49        # SERP Impression50        empty_string_check(self._config_dict['serpImpression']['@class'])...validation_test.py
Source:validation_test.py  
...5import re6class Test_check_attributes:7    def test_None_inputs(self):8        with pytest.raises(ValueError, match=none_arg_msg):9            check_attributes(None, None)10        with pytest.raises(ValueError, match=none_arg_msg):11            check_attributes([], None)12    def test_incompatible_dims(self):13        X = np.array([[1, 2, 3], [11, 21, 31]])14        with pytest.raises(15            ValueError,16            match=re.escape(17                f"Incompatible dimension for X and e matrices. X and e should have the same feature dimension: X.shape[0] = {X.shape[0]} while e.shape[0] = {X.T.shape[0]}."18            ),19        ):20            check_attributes(X, X.T)21    def test_invalid_iterations(self):22        X = np.array([[1, 2, 3], [None, 21, 31]])23        str_input = "cake"24        neg_input = -125        with pytest.raises(26            ValueError,27            match=f"iterations has incorrect type or less than 2. iterations: {str_input}",28        ):29            check_attributes(X, X, str_input)30        with pytest.raises(31            ValueError,32            match=f"iterations has incorrect type or less than 2. iterations: {neg_input}",33        ):34            check_attributes(X, X, neg_input)35    def test_invalid_n_jobs(self):36        X = np.array([[1, 2, 3], [11, 21, 31]])37        str_input = "cake"38        neg_input = -139        with pytest.raises(40            ValueError,41            match=f"n_jobs is incorrect type or less than 1. n_jobs: {str_input}",42        ):43            check_attributes(X, X, n_jobs=str_input)44        with pytest.raises(45            ValueError,46            match=f"n_jobs is incorrect type or less than 1. n_jobs: {neg_input}",47        ):...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
