How to use Mean method of Microsoft.Coyote.Benchmarking.MathHelpers class

Best Coyote code snippet using Microsoft.Coyote.Benchmarking.MathHelpers.Mean

Storage.cs

Source:Storage.cs Github

copy

Full Screen

...66 try67 {68 var response = await this.SummaryContainer.ReadItemAsync<PerfSummary>(s.Id, new PartitionKey(s.PartitionKey));69 PerfSummary old = response.Resource;70 if (old.TimeMean < s.TimeMean)71 {72 better = false;73 }74 }75 catch (CosmosException ex) when (ex.StatusCode == HttpStatusCode.NotFound)76 {77 }78 if (better)79 {80 Console.WriteLine("===> Uploading summary for {0}...", s.TestName);81 await this.SummaryContainer.UpsertItemAsync(s, new PartitionKey(s.PartitionKey));82 count++;83 }84 else85 {86 Console.WriteLine("===> Existing record is better for {0}...", s.TestName);87 }88 }89 return count;90 }91 internal async Task<List<PerfSummary>> DownloadAsync(string partitionKey, List<string> rowKeys)92 {93 List<PerfSummary> results = new List<PerfSummary>();94 if (this.CosmosDatabase is null)95 {96 await this.Connect();97 }98 if (this.CosmosDatabase is null)99 {100 return results;101 }102 if (this.SummaryContainer is null)103 {104 var response = await this.CosmosDatabase.CreateContainerIfNotExistsAsync(SummaryTableName, "/PartitionKey");105 this.SummaryContainer = response.Container;106 }107 foreach (var rowKey in rowKeys)108 {109 try110 {111 var response = await this.SummaryContainer.ReadItemAsync<PerfSummary>(rowKey, new PartitionKey(partitionKey));112 results.Add(response.Resource);113 }114 catch (CosmosException ex) when (ex.StatusCode == HttpStatusCode.NotFound)115 {116 }117 }118 return results;119 }120 internal async Task UploadLogAsync(List<CommitHistoryEntity> log)121 {122 if (this.CosmosDatabase is null)123 {124 await this.Connect();125 }126 if (this.CosmosDatabase is null)127 {128 return;129 }130 var response = await this.CosmosDatabase.CreateContainerIfNotExistsAsync(CommitLogTableName, "/PartitionKey");131 var container = response.Container;132 foreach (var item in log)133 {134 Console.WriteLine("===> Uploading commit info {0}...", item.Id);135 await container.UpsertItemAsync(item, new PartitionKey(item.PartitionKey));136 }137 }138 }139 /// <summary>140 /// Entity representing a test result.141 /// </summary>142 public class PerfEntity143 {144 /// <summary>145 /// The row id.146 /// </summary>147 [JsonProperty(PropertyName = "id")]148 public string Id { get; set; }149 /// <summary>150 /// The parition key for the data.151 /// </summary>152 public string PartitionKey { get; set; }153 /// <summary>154 /// The computer name where the test was run.155 /// </summary>156 public string MachineName { get; set; }157 /// <summary>158 /// The .net runtime version used.159 /// </summary>160 public string RuntimeVersion { get; set; }161 /// <summary>162 /// The git commit id of code being tested.163 /// </summary>164 public string CommitId { get; set; }165 /// <summary>166 /// UTC date and time the test was run.167 /// </summary>168 public DateTime Date { get; set; }169 /// <summary>170 /// The unique name of the test.171 /// </summary>172 public string TestName { get; set; }173 /// <summary>174 /// The test iteration.175 /// </summary>176 public int Iteration { get; set; }177 /// <summary>178 /// Time to complete the test in milliseconds.179 /// </summary>180 public double Time { get; set; }181 /// <summary>182 /// Standard deviation in the times.183 /// </summary>184 public double TimeStdDev { get; set; }185 /// <summary>186 /// Process working set during the test.187 /// </summary>188 public double Memory { get; set; }189 /// <summary>190 /// Standard deviation in the memory numbers.191 /// </summary>192 public double MemoryStdDev { get; set; }193 /// <summary>194 /// Process total CPU usage during the test as a % of total number of cores.195 /// </summary>196 public double Cpu { get; set; }197 /// <summary>198 /// Standard deviation in the CPU numbers.199 /// </summary>200 public double CpuStdDev { get; set; }201 /// <summary>202 /// Additional notes about the test.203 /// </summary>204 public string Comments { get; set; }205 /// <summary>206 /// Initializes a new instance of the <see cref="PerfEntity"/> class.207 /// </summary>208 public PerfEntity(string machine, string runtime, string commit, string testName, int iteration)209 {210 this.MachineName = machine;211 this.RuntimeVersion = runtime;212 this.CommitId = commit;213 this.TestName = testName;214 this.Iteration = iteration;215 this.Date = DateTime.Now.ToUniversalTime();216 this.PartitionKey = string.Format("{0}.{1}", machine, runtime);217 this.Id = string.Format("{0}.{1}.{2}", commit, testName, iteration);218 }219 /// <summary>220 /// Initializes a new instance of the <see cref="PerfEntity"/> class.221 /// Needed for retreival.222 /// </summary>223 public PerfEntity()224 {225 }226 internal static void WriteHeaders(TextWriter outFile)227 {228 outFile.WriteLine("Name,Iteration,MinTime,StdDevTime,Memory,StdDevMemory,Cpu,StdDevCpu");229 }230 internal void WriteCsv(TextWriter outFile)231 {232 outFile.WriteLine("{0},{1},{2},{3},{4},{5},{6},{7}", this.TestName, this.Iteration, this.Time, this.TimeStdDev, this.Memory, this.MemoryStdDev, this.Cpu, this.CpuStdDev);233 }234 }235 /// <summary>236 /// An entity representing the summary of all test iterations on a given test.237 /// </summary>238 public class PerfSummary239 {240 /// <summary>241 /// The row id.242 /// </summary>243 [JsonProperty(PropertyName = "id")]244 public string Id { get; set; }245 /// <summary>246 /// The parition key for the data.247 /// </summary>248 public string PartitionKey { get; set; }249 /// <summary>250 /// The computer name where the test was run.251 /// </summary>252 public string MachineName { get; set; }253 /// <summary>254 /// The .net runtime version used.255 /// </summary>256 public string RuntimeVersion { get; set; }257 /// <summary>258 /// The git commit id of code being tested.259 /// </summary>260 public string CommitId { get; set; }261 /// <summary>262 /// UTC date and time the test was run.263 /// </summary>264 public DateTime Date { get; set; }265 /// <summary>266 /// The unique name of the test.267 /// </summary>268 public string TestName { get; set; }269 /// <summary>270 /// The mean time in milliseconds.271 /// </summary>272 public double TimeMean { get; set; }273 /// <summary>274 /// The standard deviation of the test times.275 /// </summary>276 public double TimeStdDev { get; set; }277 /// <summary>278 /// The slope of the linear regression of the test times.279 /// </summary>280 public double TimeSlope { get; set; }281 /// <summary>282 /// The mean time in milliseconds.283 /// </summary>284 public double MemoryMean { get; set; }285 /// <summary>286 /// The standard deviation of the memory usage.287 /// </summary>288 public double MemoryStdDev { get; set; }289 /// <summary>290 /// The slope of the linear regression of the memory usage.291 /// </summary>292 public double MemorySlope { get; set; }293 /// <summary>294 /// The process cpu utilization as a percentage of total cores.295 /// </summary>296 public double CpuMean { get; set; }297 /// <summary>298 /// The standard deviation of the cpu times.299 /// </summary>300 public double CpuStdDev { get; set; }301 /// <summary>302 /// The slope of the linear regression of the cpu utilization.303 /// </summary>304 public double CpuSlope { get; set; }305 /// <summary>306 /// Additional notes about the test.307 /// </summary>308 public string Comments { get; set; }309 /// <summary>310 /// The raw test iterations.311 /// </summary>312 [IgnoreDataMember]313 internal readonly List<PerfEntity> Data;314 /// <summary>315 /// Initializes a new instance of the <see cref="PerfSummary"/> class.316 /// </summary>317 public PerfSummary(List<PerfEntity> data)318 {319 PerfEntity e = data[0];320 this.MachineName = e.MachineName;321 this.RuntimeVersion = e.RuntimeVersion;322 this.CommitId = e.CommitId;323 this.Data = data;324 this.TestName = e.TestName;325 this.Date = DateTime.Now.ToUniversalTime();326 this.PartitionKey = string.Format("{0}.{1}", e.MachineName, e.RuntimeVersion);327 this.Id = string.Format("{0}.{1}", e.CommitId, e.TestName);328 // summaryize the data.329 double meanTime = MathHelpers.Mean(from i in data select i.Time);330 double meanMemory = MathHelpers.Mean(from i in data select i.Memory);331 double meanCpu = MathHelpers.Mean(from i in data select i.Cpu);332 double meanStdDevTime = MathHelpers.Mean(from i in data select i.TimeStdDev);333 double meanStdDevMemory = MathHelpers.Mean(from i in data select i.MemoryStdDev);334 double meanStdDevCpu = MathHelpers.Mean(from i in data select i.CpuStdDev);335 if (meanStdDevTime is 0)336 {337 meanStdDevTime = MathHelpers.StandardDeviation(from i in data select i.Time);338 meanStdDevMemory = MathHelpers.StandardDeviation(from i in data select i.Memory);339 meanStdDevCpu = MathHelpers.StandardDeviation(from i in data select i.Cpu);340 }341 double timeSlope = MathHelpers.LinearRegression(MathHelpers.ToDataPoints(from i in data select i.Time)).Slope / meanTime;342 double memSlope = MathHelpers.LinearRegression(MathHelpers.ToDataPoints(from i in data select i.Memory)).Slope / meanMemory;343 double cpuSlope = MathHelpers.LinearRegression(MathHelpers.ToDataPoints(from i in data select i.Cpu)).Slope / meanCpu;344 // more than 10% slope we have a problem!345 if (timeSlope > 0.1)346 {347 this.Comments = "Slow down?";348 }349 else if (memSlope > 0.1)350 {351 this.Comments = "Memory leak?";352 }353 else if (cpuSlope > 0.1)354 {355 this.Comments = "Thread leak?";356 }357 this.TimeMean = meanTime;358 this.TimeStdDev = meanStdDevTime;359 this.TimeSlope = timeSlope;360 this.MemoryMean = meanMemory;361 this.MemoryStdDev = meanStdDevMemory;362 this.MemorySlope = memSlope;363 this.CpuMean = meanCpu;364 this.CpuStdDev = meanStdDevCpu;365 this.CpuSlope = cpuSlope;366 }367 /// <summary>368 /// Initializes a new instance of the <see cref="PerfSummary"/> class.369 /// Needed for retreival.370 /// </summary>371 public PerfSummary()372 {373 }374 internal static void WriteHeaders(TextWriter outFile)375 {376 outFile.WriteLine("Machine,Runtime,Commit,Date,Test,TimeMean,TimeStdDev,TimeSlope,MemoryMean,MemoryStdDev,MemorySlope,CpuMean,CpuStdDev,CpuSlope");377 }378 internal void WriteCsv(TextWriter outFile)379 {380 outFile.WriteLine("{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13}", this.MachineName,381 this.RuntimeVersion, this.CommitId, this.Date.ToLocalTime(), this.TestName, this.TimeMean,382 this.TimeStdDev, this.TimeSlope, this.MemoryMean, this.MemoryStdDev, this.MemorySlope,383 this.CpuMean, this.CpuStdDev, this.CpuSlope);384 }385 internal void SetPartitionKey(string partitionKey)386 {387 this.PartitionKey = partitionKey;388 int pos = partitionKey.IndexOf(".");389 if (pos > 0)390 {391 this.MachineName = partitionKey.Substring(0, pos);392 this.RuntimeVersion = partitionKey.Substring(pos + 1);393 }394 }395 }396 /// <summary>397 /// Entity representing a commit id....

Full Screen

Full Screen

MathHelpers.cs

Source:MathHelpers.cs Github

copy

Full Screen

...54 /// </summary>55 public static class MathHelpers56 {57 /// <summary>58 /// Return the Mean of the given numbers.59 /// </summary>60 public static double Mean(IEnumerable<double> values)61 {62 double sum = 0;63 double count = 0;64 foreach (double d in values)65 {66 sum += d;67 count++;68 }69 if (count is 0)70 {71 return 0;72 }73 return sum / count;74 }75 /// <summary>76 /// Return the standard deviation of the given values.77 /// </summary>78 public static double StandardDeviation(IEnumerable<double> values)79 {80 double mean = Mean(values);81 double totalSquares = 0;82 int count = 0;83 foreach (double v in values)84 {85 count++;86 double diff = mean - v;87 totalSquares += diff * diff;88 }89 if (count is 0)90 {91 return 0;92 }93 return Math.Sqrt(totalSquares / count);94 }95 /// <summary>96 /// Trim values outside of +/- the given range from the mean.97 /// </summary>98 internal static IEnumerable<double> Trim(IEnumerable<double> times, double range)99 {100 double mean = Mean(times);101 foreach (var item in times)102 {103 if (item <= mean + range && item >= mean - range)104 {105 yield return item;106 }107 }108 }109 /// <summary>110 /// Trim values outside mean + range.111 /// </summary>112 internal static IEnumerable<double> TrimHigh(IEnumerable<double> times, double range)113 {114 double mean = Mean(times);115 foreach (var item in times)116 {117 if (item <= mean + range)118 {119 yield return item;120 }121 }122 }123 /// <summary>124 /// Return the variance, sum of the difference between each value and the mean, squared.125 /// </summary>126 public static double Variance(IEnumerable<double> values)127 {128 double mean = Mean(values);129 double variance = 0;130 foreach (double d in values)131 {132 double diff = d - mean;133 variance += diff * diff;134 }135 return variance;136 }137 /// <summary>138 /// Convert the list of doubles into a list of DataPoints.139 /// </summary>140 public static List<DataPoint> ToDataPoints(IEnumerable<double> values)141 {142 int index = 0;143 return new List<DataPoint>(from v in values select new DataPoint(index++, v));144 }145 /// <summary>146 /// Return the covariance in the given x,y values.147 /// The sum of the difference between x and its mean times the difference between y and its mean.148 /// </summary>149 public static double Covariance(IEnumerable<DataPoint> pts)150 {151 double xsum = 0;152 double ysum = 0;153 double count = 0;154 foreach (var d in pts)155 {156 xsum += d.X;157 ysum += d.Y;158 count++;159 }160 if (count is 0)161 {162 return 0;163 }164 double xMean = xsum / count;165 double yMean = ysum / count;166 double covariance = 0;167 foreach (var d in pts)168 {169 covariance += (d.X - xMean) * (d.Y - yMean);170 }171 return covariance;172 }173 /// <summary>174 /// Compute the trend line through the given points, and return the line in the form:175 /// y = a + b.x.176 /// </summary>177 /// <param name="pts">The data to analyze.</param>178 public static Line LinearRegression(IEnumerable<DataPoint> pts)179 {180 double xMean = Mean(from p in pts select p.X);181 double yMean = Mean(from p in pts select p.Y);182 double xVariance = Variance(from p in pts select p.X);183 double yVariance = Variance(from p in pts select p.Y);184 double covariance = Covariance(pts);185 double a = 0;186 double b = 0;187 if (xVariance is 0)188 {189 a = yMean;190 b = 1;191 }192 else193 {194 b = covariance / xVariance;195 a = yMean - (b * xMean);196 }197 return new Line(a, b);198 }199 }200}...

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2using System;3using System.Collections.Generic;4using System.Linq;5using System.Text;6using System.Threading.Tasks;7{8 {9 static void Main(string[] args)10 {11 double[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };12 double mean = MathHelpers.Mean(array);13 Console.WriteLine("mean is " + mean);14 }15 }16}17using Microsoft.Coyote.Benchmarking;18using Microsoft.Coyote.Benchmarking;19using System;20using System.Collections.Generic;21using System.Linq;22using System.Text;23using System.Threading.Tasks;24{25 {26 static void Main(string[] args)27 {28 double[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };29 double median = MathHelpers.Median(array);30 Console.WriteLine("median is " + median);31 }32 }33}

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2var mean = MathHelpers.Mean(values);3using Microsoft.Coyote.Benchmarking;4var mean = MathHelpers.Mean(values);5using Microsoft.Coyote.Benchmarking;6var mean = MathHelpers.Mean(values);7using Microsoft.Coyote.Benchmarking;8var mean = MathHelpers.Mean(values);9using Microsoft.Coyote.Benchmarking;10var mean = MathHelpers.Mean(values);11using Microsoft.Coyote.Benchmarking;12var mean = MathHelpers.Mean(values);13using Microsoft.Coyote.Benchmarking;14var mean = MathHelpers.Mean(values);15using Microsoft.Coyote.Benchmarking;16var mean = MathHelpers.Mean(values);17using Microsoft.Coyote.Benchmarking;18var mean = MathHelpers.Mean(values);19using Microsoft.Coyote.Benchmarking;20var mean = MathHelpers.Mean(values);21using Microsoft.Coyote.Benchmarking;22var mean = MathHelpers.Mean(values);23using Microsoft.Coyote.Benchmarking;

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2using System;3{4 {5 public static double Mean(double[] values)6 {7 double sum = 0;8 for (int i = 0; i < values.Length; i++)9 {10 sum += values[i];11 }12 return sum / values.Length;13 }14 }15}16using Microsoft.Coyote.Benchmarking;17using System;18{19 {20 public static double Mean(double[] values)21 {22 double sum = 0;23 for (int i = 0; i < values.Length; i++)24 {25 sum += values[i];26 }27 return sum / values.Length;28 }29 }30}31using Microsoft.Coyote.Benchmarking;32using System;33{34 {35 public static double Mean(double[] values)36 {37 double sum = 0;38 for (int i = 0; i < values.Length; i++)39 {40 sum += values[i];41 }42 return sum / values.Length;43 }44 }45}46using Microsoft.Coyote.Benchmarking;47using System;48{49 {50 public static double Mean(double[] values)51 {52 double sum = 0;53 for (int i = 0; i < values.Length; i++)54 {55 sum += values[i];56 }57 return sum / values.Length;58 }59 }60}61using Microsoft.Coyote.Benchmarking;62using System;63{64 {65 public static double Mean(double

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2double result = MathHelpers.Mean(1, 2, 3);3result = MathHelpers.Median(1, 2, 3);4using Microsoft.Coyote.Benchmarking;5double result = MathHelpers.Mean(new List<int> { 1, 2, 3 });6result = MathHelpers.Median(new List<int> { 1, 2, 3 });7using Microsoft.Coyote.Benchmarking;8double result = MathHelpers.Mean(new List<double> { 1.1, 2.2, 3.3 });9result = MathHelpers.Median(new List<double> { 1.1, 2.2, 3.3 });10using Microsoft.Coyote.Benchmarking;11double result = MathHelpers.Mean(new List<int> { 1, 2, 3 }, new ReverseComparer());12result = MathHelpers.Median(new List<int> { 1, 2, 3 }, new ReverseComparer());

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2using System;3using System.Collections.Generic;4using System.Linq;5{6 {7 static void Main(string[] args)8 {9 List<int> list = new List<int> { 1, 2, 3, 4, 5 };10 var mean = MathHelpers.Mean(list);11 Console.WriteLine(mean);12 }13 }14}15using Microsoft.Coyote.Benchmarking;16using System;17using System.Collections.Generic;18using System.Linq;19{20 {21 static void Main(string[] args)22 {23 List<int> list = new List<int> { 1, 2, 3, 4, 5 };24 var mean = MathHelpers.Mean(list);25 Console.WriteLine(mean);26 }27 }28}29using Microsoft.Coyote.Benchmarking;30using System;31using System.Collections.Generic;32using System.Linq;33{34 {35 static void Main(string[] args)36 {37 List<int> list = new List<int> { 1, 2, 3, 4, 5 };38 var mean = MathHelpers.Mean(list);39 Console.WriteLine(mean);40 }41 }42}43using Microsoft.Coyote.Benchmarking;44using System;45using System.Collections.Generic;46using System.Linq;47{48 {49 static void Main(string[] args)50 {51 List<int> list = new List<int> { 1, 2, 3, 4, 5 };52 var mean = MathHelpers.Mean(list);53 Console.WriteLine(mean);54 }55 }56}57using Microsoft.Coyote.Benchmarking;58using System;59using System.Collections.Generic;60using System.Linq;61{62 {63 static void Main(string[] args)

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2using System;3{4 {5 static void Main(string[] args)6 {7 var data = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0 };8 var mean = MathHelpers.Mean(data);9 Console.WriteLine($"Mean: {mean}");10 }11 }12}

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using Microsoft.Coyote.Benchmarking;2{3 {4 public static void Main()5 {6 double[] data = new double[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };7 double mean = MathHelpers.Mean(data);8 System.Console.WriteLine(mean);9 }10 }11}12{13 {14 public static double Mean(double[] values)15 {16 double sum = 0;17 for (int i = 0; i < values.Length; i++)18 {19 sum += values[i];20 }21 return sum / values.Length;22 }23 }24}25{26 {27 public static double Mean(double[] values)28 {29 double sum = 0;30 Parallel.For(0, values.Length, i => sum += values[i]);

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1using System.Collections.Generic;2using Microsoft.Coyote.Benchmarking;3{4 {5 static void Main(string[] args)6 {7 List<double> list = new List<double> { 1.0, 2.0, 3.0, 4.0, 5.0 };8 double mean = MathHelpers.Mean(list);9 }10 }11}12using System.Collections.Generic;13using Microsoft.Coyote.Benchmarking;14{15 {16 static void Main(string[] args)17 {18 List<double> list = new List<double> { 1.0, 2.0, 3.0, 4.0, 5.0 };19 double median = MathHelpers.Median(list);20 }21 }22}23using System.Collections.Generic;24using Microsoft.Coyote.Benchmarking;25{26 {27 static void Main(string[] args)28 {29 List<double> list = new List<double> { 1.0, 2.0, 3.0, 4.0, 5.0 };30 double standardDeviation = MathHelpers.StandardDeviation(list);31 }32 }33}34using System.Collections.Generic;35using Microsoft.Coyote.Benchmarking;36{37 {38 static void Main(string[] args)39 {40 List<double> list = new List<double> { 1.0, 2.0, 3.0, 4.0, 5.0 };41 double standardError = MathHelpers.StandardError(list);42 }43 }44}

Full Screen

Full Screen

Mean

Using AI Code Generation

copy

Full Screen

1public static void Main(string[] args)2{3 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });4 Console.WriteLine($"Mean is {mean}");5}6public static void Main(string[] args)7{8 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });9 Console.WriteLine($"Mean is {mean}");10}11public static void Main(string[] args)12{13 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });14 Console.WriteLine($"Mean is {mean}");15}16public static void Main(string[] args)17{18 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });19 Console.WriteLine($"Mean is {mean}");20}21public static void Main(string[] args)22{23 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });24 Console.WriteLine($"Mean is {mean}");25}26public static void Main(string[] args)27{28 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });29 Console.WriteLine($"Mean is {mean}");30}31public static void Main(string[] args)32{33 var mean = MathHelpers.Mean(new double[] { 1, 2, 3, 4, 5 });34 Console.WriteLine($"Mean is {mean}");35}

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Coyote automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful