How to use _cal_confidence method in Airtest

Best Python code snippet using Airtest Github


Full Screen

...44        rect, matches, good = self.get_rect_from_good_matches(im_source, im_search, kp_sch, des_sch, kp_src, des_src)45        if not rect:46            return None47        # 第三步, 从匹配图片截取矩阵范围,并缩放到模板大小,进行模板匹配求出相似度48        confidence = self._cal_confidence(im_source=im_source, im_search=im_search, rect=rect, rgb=rgb)49        best_match = generate_result(rect=rect, confi=confidence)50        return best_match if confidence > threshold else None51    @print_all_result52    def find_all(self, im_source, im_search, threshold: Union[int, float] = None,53                 max_count: int = 10,54                 rgb: bool = None):55        threshold = threshold or self.threshold56        rgb = rgb is None and self.rgb or rgb57        im_source, im_search = self.check_detection_input(im_source, im_search)58        if not im_source or not im_search:59            return None60        result = []61        # 第一步: 获取特征点集62        kp_sch, des_sch = self.get_keypoints_and_descriptors(image=im_search.rgb_2_gray())63        kp_src, des_src = self.get_keypoints_and_descriptors(image=im_source.rgb_2_gray())64        while len(kp_src) > 2 or len(kp_sch) > 2:65            rect, matches, good = self.get_rect_from_good_matches(im_source, im_search,66                                                                  kp_sch, des_sch,67                                                                  kp_src, des_src)68            if not rect:69                break70            confidence = self._cal_confidence(im_source=im_source, im_search=im_search, rect=rect, rgb=rgb)71            if confidence > threshold and len(result) < max_count:72                result.append(generate_result(rect, confidence))73            kp_src, des_src = self.delect_good_descriptors(good, kp_src, des_src)74            kp_src, des_src = self.delect_rect_descriptors(rect, kp_src, des_src)75        return result76    def _cal_confidence(self, im_source, im_search, rect: Rect, rgb: bool):77        """ 将截图和识别结果缩放到大小一致,并计算可信度 """78        try:79            target_img = im_source.crop_image(rect)80        except OverflowError:81            raise MatchResultError("Target area({}) out of screen{}".format(rect, im_source.size))82        h, w = im_search.size83        target_img.resize(w, h)84        if rgb:85            confidence = self.template.cal_rgb_confidence(im_source=im_search, im_search=target_img)86        else:87            confidence = self.template.cal_ccoeff_confidence(im_source=im_search, im_search=target_img)88        confidence = (1 + confidence) / 289        return confidence90    @staticmethod...

Full Screen

Full Screen Github


Full Screen

...59def _dist(point, target):60    x, y = point61    m, n = target62    return np.sqrt((x - m) ** 2 + (y - n) ** 2)63def _cal_confidence(dist):64    # linear function. score decreases as the distance increases65    return -CONFIDENCE_RATE * dist + 166def is_id_card(crop_box, face_box, debug=False):67    xleft, xright, xtop, xbottom = crop_box68    yleft, yright, ytop, ybottom = face_box69    yleft += xleft70    yright += xleft71    ytop += xtop72    ybottom += xtop73    if debug:74        print('crop box: ', xleft, xright, xtop, xbottom)75        print('face box: ', yleft, yright, ytop, ybottom)76    crop_mid = _calc_mid(xleft, xright, xtop, xbottom)77    face_mid = _calc_mid(yleft, yright, ytop, ybottom)78    target = (xright + crop_mid[0]) // 2, crop_mid[1]79    return _cal_confidence(_dist(face_mid, target))80def id_card_detect(img, args):81    sess, detection_graph, category_index = args82    tensors = get_tensors(detection_graph)83    try:84        # crop85        cropped_img, crop_box, score = crop_id(img, sess, tensors, category_index)86    except:87        import traceback88        traceback.print_exc()89        return None, 090    return cropped_img if cropped_img is not None else None, score91if __name__ == "__main__":92    img = cv.imread('test_samples/1121.png')93    args = load_model()...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:


You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Airtest automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?