Best Python code snippet using Kiwi_python
paint.py
Source:paint.py  
1# encoding: utf-82import numpy as np3import matplotlib.pyplot as plt4import sys5from scipy import stats6from matplotlib import rcParams7rcParams.update({'font.size': 10,'font.weight':'bold'})8patterns = ('/','//','-', '+', 'x', '\\', '\\\\', '*', 'o', 'O', '.')9##first read from file10pFabric="pFabric"11Varys="Varys"12Barrat="Barrat"13Yosemite="Yosemite"14Fair="FAIR"15DARK='DARK'16SHORT=20*1024*1024*102417NARROW=14018def getAverage(arralylist):19	return np.mean(arralylist)20def getRange(arraylist,element):21	return stats.percentileofscore(arraylist, element)22def getElements(arraylist,percentage):23	result=[]24	for element in arraylist:25		pos=getRange(arraylist,element)26		if pos <= percentage:27			result.append(element)28	return result29def getPercentageResult(path,percentage):30	f=open(path,"r")31	totaline=f.readlines()32	wc1=[]33	wc2=[]34	wc3=[]35	wc4=[]36	wc=[]37	for line in totaline:38		if line[0]=='J':39			arrayline=line.split()40			#analyze job 41			jobname=arrayline[0]42			starttime=float(arrayline[1])43			finishtime=float(arrayline[2])44			mappers=int(arrayline[3])45			reducers=int(arrayline[4])46			totalshuffle=float(arrayline[5])47			maxshuffle=float(arrayline[6])48			duration=float(arrayline[7])49			deadlineduration=float(arrayline[8])50			shufflesum=float(arrayline[9])51			weight=float(arrayline[10])52			width=mappers53			if mappers < reducers:54				width=reducers55			else:56				width=mappers57			if maxshuffle < SHORT and width < NARROW:58				wc1.append(weight*duration)59				60			elif maxshuffle >= SHORT and width < NARROW:61				wc2.append(weight*duration)62			elif maxshuffle < SHORT and width > NARROW:63				wc3.append(weight*duration)64			else:65				wc4.append(weight*duration)66				67	#wc=wc1+wc2+wc3+wc468	f.close()69	wc1add=070	wc2add=071	wc3add=072	wc4add=073	wcadd=074	wc1=getElements(wc1,percentage)75	wc2=getElements(wc2,percentage)76	wc3=getElements(wc3,percentage)77	wc4=getElements(wc4,percentage)78	for element in wc1:79		wc1add+=element80	for element in wc2:81		wc2add+=element82	for element in wc3:83		wc3add+=element84	for element in wc4:85		wc4add+=element86	return [wc1add,wc2add,wc3add,wc4add,wc1add+wc2add+wc3add+wc4add]87	88def getPercentile(arraylist,percentage):89	a=np.array(arraylist)90	p=np.percentile(a,percentage)91	return p92def getWcResult(path):93	f=open(path,"r")94	totaline=f.readlines()95	wc=[]96	for line in totaline:97		if line[0]=='J':98			arrayline=line.split()99			#analyze job 100			jobname=arrayline[0]101			starttime=float(arrayline[1])102			finishtime=float(arrayline[2])103			mappers=int(arrayline[3])104			reducers=int(arrayline[4])105			totalshuffle=float(arrayline[5])106			maxshuffle=float(arrayline[6])107			duration=float(arrayline[7])108			deadlineduration=float(arrayline[8])109			shufflesum=float(arrayline[9])110			weight=float(arrayline[10])111			width=mappers112			wc.append(weight*duration/1000)113	f.close()114	return wc115def getResult(path):116		f=open(path,"r")117		totaline=f.readlines()118		bin1=0119		bin2=0120		bin3=0121		bin4=0122		wc1=0123		wc2=0124		wc3=0125		wc4=0126		wc=0127		for line in totaline:128			if line[0]=='J':129				arrayline=line.split()130				#analyze job 131				jobname=arrayline[0]132				starttime=float(arrayline[1])133				finishtime=float(arrayline[2])134				mappers=int(arrayline[3])135				reducers=int(arrayline[4])136				totalshuffle=float(arrayline[5])137				maxshuffle=float(arrayline[6])138				duration=float(arrayline[7])139				deadlineduration=float(arrayline[8])140				shufflesum=float(arrayline[9])141				weight=float(arrayline[10])142				width=mappers143				if mappers < reducers:144					width=reducers145				else:146					width=mappers147				if maxshuffle < SHORT and width < NARROW:148					wc1+=weight*duration149					bin1+=1150				elif maxshuffle >= SHORT and width < NARROW:151					wc2+=weight*duration152					bin2+=1153				elif maxshuffle < SHORT and width > NARROW:154					wc3+=weight*duration155					bin3+=1156				else:157					wc4+=weight*duration158					bin4+=1159		wc=wc1+wc2+wc3+wc4160		f.close()161		return [wc1,wc2,wc3,wc4,wc]162	163def frac(v,x):164	n=0165	for i in v:166		if i<x:167			n=n+1168	return float(n)/float(len(v))169if __name__=='__main__':170	Barratwc=getResult(Barrat)171	Varyswc=getResult(Varys)172	Yosemitewc=getResult(Yosemite)173	pFabricwc=getResult(pFabric)174	Fairwc=getResult(Fair)175	Darkwc=getResult(DARK)176	177	VarysResult=[]178	YosemiteResult=[]179	BarratResult=[]180	pFabricResult=[]181	FairResult=[]182	DarkResult=[]183	percentageVaryswc=getPercentageResult(Varys,95)184	percentageYosemitewc=getPercentageResult(Yosemite,95)185	percentageBarratwc=getPercentageResult(Barrat,95)186	percentagepFabricwc=getPercentageResult(pFabric,95)187	percentageFairwc=getPercentageResult(Fair,95)188	percentageDarkwc=getPercentageResult(DARK,95)189	percentageVarysResult=[]190	percentageYosemiteResult=[]191	percentageBarratResult=[]192	percentagepFabricResult=[]193	percentageFairResult=[]194	percentageDarkResult=[]195	for i in range(0,5):196		VarysResult.append(percentageFairwc[i]/Varyswc[i])197		percentageVarysResult.append(percentageFairwc[i]/percentageVaryswc[i])198		YosemiteResult.append(percentageFairwc[i]/Yosemitewc[i])199		percentageYosemiteResult.append(percentageFairwc[i]/percentageYosemitewc[i])200		BarratResult.append(percentageFairwc[i]/Barratwc[i])201		percentageBarratResult.append(percentageFairwc[i]/percentageBarratwc[i])202		DarkResult.append(percentageFairwc[i]/Darkwc[i])203		percentageDarkResult.append(percentageFairwc[i]/percentageDarkwc[i])204	N=5205	ind = np.arange(N)  # the x locations for the groups206	width = 0.1       # the width of the bars207	fig, ax = plt.subplots(figsize=(12,6))208	rects1 = ax.bar(ind, BarratResult, width, hatch="+",color='r',ecolor='k')209	rects2 = ax.bar(ind+width, DarkResult, width, hatch="+",color='g',ecolor='k')210	rects3 = ax.bar(ind+2*width, VarysResult, width, hatch='-',color='white',ecolor='k')211	rects4 = ax.bar(ind+3*width, YosemiteResult, width, hatch='+',color='k',ecolor='k')212	rects5 = ax.bar(ind+4*width, percentageBarratResult, width, hatch="+",color='#FF7256',ecolor='k')213	rects6 = ax.bar(ind+5*width, percentageDarkResult, width, hatch="+",color='#00FF00',ecolor='k')214	rects7 = ax.bar(ind+6*width, percentageVarysResult, width, hatch='-',color='#EEE9E9',ecolor='k')215	rects8=ax.bar(ind+7*width, percentageYosemiteResult, width, hatch='+',color='#696969',ecolor='k')216	ax.set_xticks(ind+width)217	ax.set_xticklabels(('SHORT & NARROW','LONG & NARROW','SHORT & WIDTH','LONG & WIDTH','ALL'))218	ax.legend((rects1[0],rects2[0],rects3[0],rects4[0],rects5[0],rects6[0],rects7[0],rects8[0]), ('Barrat','Aalo','Vary','Yosemite','Barrat(95th)','Aalo(95th)','Vary(95th)','Yosemite(95th)'),loc=0)219	ax.set_ylabel('Factor of Improvement',fontsize=12,fontweight='bold')220	ax.set_ylim([0,5])221	ax.set_xlabel('coflow types',fontsize=12,fontweight='bold')222	#plt.figure(figsize=(12,3))223	#plt.show()224	fig.savefig("weight_real_type.eps")225	fig, ax = plt.subplots(figsize=(4.5,6))226	x = np.linspace(0, 1000, 10)227	Yosemitewc=getWcResult(Yosemite)228	Varyswc=getWcResult(Varys)229	Fairwc=getWcResult(Fair)230	pFabricwc=getWcResult(pFabric)231	Barratwc=getWcResult(Barrat)232	Darkwc=getWcResult(DARK)233	YosemiteCDF=[]234	VarysCDF=[]235	FairCDF=[]236	pFabricCDF=[]237	BarratCDF=[]238	AaloCDF=[]239	for v in x:240		YosemiteCDF.append(frac(Yosemitewc,v))241		VarysCDF.append(frac(Varyswc,v))242		FairCDF.append(frac(Fairwc,v))243		pFabricCDF.append(frac(pFabricwc,v))244		BarratCDF.append(frac(Barratwc,v))245		AaloCDF.append(frac(Darkwc,v))246	ax.plot(x, BarratCDF,linewidth=3,color='b',label='Aalo')247	ax.plot(x, FairCDF,linewidth=3,color='r',label='Fair')248	ax.plot(x, AaloCDF,linewidth=3,color='g',label='Barrat')249	ax.plot(x, YosemiteCDF,linewidth=3,color='k',label='Yosemite')250	251	ax.legend(loc='lower right')252	plt.ylabel('CDF',fontsize=12,fontweight='bold')253	plt.xlabel('weight completion time(s)',fontsize=12,fontweight='bold')254	plt.show()...grid.default.config.js
Source:grid.default.config.js  
1//TODO: What is this file? Is it used?? I don't think so2var uSkyGridConfig = [3{4    style:[5        {6            label: "Set a background image",7            description: "Set a row background",8            key: "background-image",9            view: "imagepicker",10            modifier: "url({0})"11        },12        {13            label: "Set a font color",14            description: "Pick a color",15            key: "color",16            view: "colorpicker"17        }18    ],19    config:[20        {21            label: "Preview",22            description: "Display a live preview",23            key: "preview",24            view: "boolean"25        },26        {27            label: "Class",28            description: "Set a css class",29            key: "class",30            view: "textstring"31        }32    ],33    layouts: [34    {35        grid: 12,36        percentage: 100,37        rows: [38        {39            name: "Single column",40                columns: [{41                    grid: 12,42                    percentage: 10043                }]44        },45        {46            name: "Article",47                models: [{48                    grid: 4,49                    percentage: 33.3,50                    allowed: ["media","quote"]51                }, {52                    grid: 8,53                    percentage: 66.6,54                    allowed: ["rte"]55                }]56        },57        {58         name: "Article, reverse",59         models: [60         {61          grid: 8,62          percentage: 66.6,63          allowed: ["rte","macro"]64      },65      {66         grid: 4,67         percentage: 33.3,68         allowed: ["media","quote","embed"]69     }]70 },71 {72     name: "Profile page",73     models: [74     {75         grid: 4,76         percentage: 33.3,77         allowed: ["media"]78     },79     {80      grid: 8,81      percentage: 66.6,82      allowed: ["rte"]83  }84  ]85},86{87 name: "Headline",88 models: [89 {90     grid: 12,91     percentage: 100,92     max: 1,93     allowed: ["headline"]94 }95 ]96},97{98    name: "Three columns",99    models: [{100        grid: 4,101        percentage: 33.3,102        allowed: ["rte"]103    },104    {105         grid: 4,106         percentage: 33.3,107         allowed: ["rte"]108    },109    {110        grid: 4,111        percentage: 33.3,112        allowed: ["rte"]113    }]114}115]116}117]118},119{120    columns: [121    {122        grid: 9,123        percentage: 70,124        cellModels: [125        {126            models: [{127                grid: 12,128                percentage: 100129            }]130        }, {131            models: [{132                grid: 6,133                percentage: 50134            }, {135                grid: 6,136                percentage: 50137            }]138        }, {139            models: [{140                grid: 4,141                percentage: 33.3142            }, {143                grid: 4,144                percentage: 33.3145            }, {146                grid: 4,147                percentage: 33.3148            }]149        }, {150            models: [{151                grid: 3,152                percentage: 25153            }, {154                grid: 3,155                percentage: 25156            }, {157                grid: 3,158                percentage: 25159            }, {160                grid: 3,161                percentage: 25162            }, ]163        }, {164            models: [{165                grid: 2,166                percentage: 16.6167            }, {168                grid: 2,169                percentage: 16.6170            }, {171                grid: 2,172                percentage: 16.6173            }, {174                grid: 2,175                percentage: 16.6176            }, {177                grid: 2,178                percentage: 16.6179            }, {180                grid: 2,181                percentage: 16.6182            }]183        }, {184            models: [{185                grid: 8,186                percentage: 60187            }, {188                grid: 4,189                percentage: 40190            }]191        }, {192            models: [{193                grid: 4,194                percentage: 40195            }, {196                grid: 8,197                percentage: 60198            }]199        }200        ]201    },202    {203        grid: 3,204        percentage: 30,205        cellModels: [206        {207            models: [{208                grid: 12,209                percentage: 100210            }]211        }212        ]213    }214    ]215},216{217    columns: [218    {219        grid: 3,220        percentage: 30,221        cellModels: [222        {223            models: [{224                grid: 12,225                percentage: 100226            }]227        }228        ]229    },230    {231        grid: 9,232        percentage: 70,233        cellModels: [234        {235            models: [{236                grid: 12,237                percentage: 100238            }]239        }, {240            models: [{241                grid: 6,242                percentage: 50243            }, {244                grid: 6,245                percentage: 50246            }]247        }, {248            models: [{249                grid: 4,250                percentage: 33.3251            }, {252                grid: 4,253                percentage: 33.3254            }, {255                grid: 4,256                percentage: 33.3257            }]258        }, {259            models: [{260                grid: 3,261                percentage: 25262            }, {263                grid: 3,264                percentage: 25265            }, {266                grid: 3,267                percentage: 25268            }, {269                grid: 3,270                percentage: 25271            }, ]272        }, {273            models: [{274                grid: 2,275                percentage: 16.6276            }, {277                grid: 2,278                percentage: 16.6279            }, {280                grid: 2,281                percentage: 16.6282            }, {283                grid: 2,284                percentage: 16.6285            }, {286                grid: 2,287                percentage: 16.6288            }, {289                grid: 2,290                percentage: 16.6291            }]292        }, {293            models: [{294                grid: 8,295                percentage: 60296            }, {297                grid: 4,298                percentage: 40299            }]300        }, {301            models: [{302                grid: 4,303                percentage: 40304            }, {305                grid: 8,306                percentage: 60307            }]308        }309        ]310    }311    ]312},313{314    columns: [315    {316        grid: 4,317        percentage: 33.3,318        cellModels: [319        {320            models: [{321                grid: 12,322                percentage: 100323            }]324        }325        ]326    },327    {328        grid: 4,329        percentage: 33.3,330        cellModels: [331        {332            models: [{333                grid: 12,334                percentage: 100335            }]336        }337        ]338    },339    {340        grid: 4,341        percentage: 33.3,342        cellModels: [343        {344            models: [{345                grid: 12,346                percentage: 100347            }]348        }349        ]350    }351    ]352}...4_InstagramRanking.py
Source:4_InstagramRanking.py  
1import pandas as pd2import numpy as np3df = pd.read_csv("usersInstagramPercentages.csv")4df1 =df.loc[df['micro']==1] #only micro influencers dataset to evaluate their percentiles5scores = []6for i in range(0,len(df['id'])):7  score=08  #score by followers9  if(5000<=df['followers'].iloc[i]<=df1['followers'].quantile(0.2)):10    score+=2.511  elif(df1['followers'].quantile(0.2)<df['followers'].iloc[i]<=df1['followers'].quantile(0.4)):12    score+=513  elif(df1['followers'].quantile(0.4)<df['followers'].iloc[i]<=df1['followers'].quantile(0.6)):14    score+=7.515  elif(df1['followers'].quantile(0.6)<df['followers'].iloc[i]<=df1['followers'].quantile(0.8)):16    score+=1017  elif(df1['followers'].quantile(0.8)<df['followers'].iloc[i]<=100000):18    score+=12.519  #score by followers following ratio20  if(2<=df['followers_following_ratio'].iloc[i]<=df1['followers_following_ratio'].quantile(0.2)):21    score+=2.522  elif(df1['followers_following_ratio'].quantile(0.2)<df['followers_following_ratio'].iloc[i]<=df1['followers_following_ratio'].quantile(0.4)):23    score+=524  elif(df1['followers_following_ratio'].quantile(0.4)<df['followers_following_ratio'].iloc[i]<=df1['followers_following_ratio'].quantile(0.6)):25    score+=7.526  elif(df1['followers_following_ratio'].quantile(0.6)<df['followers_following_ratio'].iloc[i]<=df1['followers_following_ratio'].quantile(0.8)):27    score+=1028  elif(df['followers_following_ratio'].iloc[i]>df1['followers_following_ratio'].quantile(0.8)):29    score+=12.530  #score by followers per media31  if(2<=df['followers_per_media'].iloc[i]<=df1['followers_per_media'].quantile(0.2)):32    score+=2.533  elif(df1['followers_per_media'].quantile(0.2)<df['followers_per_media'].iloc[i]<=df1['followers_per_media'].quantile(0.4)):34    score+=535  elif(df1['followers_per_media'].quantile(0.4)<df['followers_per_media'].iloc[i]<=df1['followers_per_media'].quantile(0.6)):36    score+=7.537  elif(df1['followers_per_media'].quantile(0.6)<df['followers_per_media'].iloc[i]<=df1['followers_per_media'].quantile(0.8)):38    score+=1039  elif(df['followers_per_media'].iloc[i]>df1['followers_per_media'].quantile(0.8)):40    score+=12.541  #score by interactions42  if(0<=df['interactions'].iloc[i]<=df1['interactions'].quantile(0.2)):43    score+=2.544  elif(df1['interactions'].quantile(0.2)<df['interactions'].iloc[i]<=df1['interactions'].quantile(0.4)):45    score+=546  elif(df1['interactions'].quantile(0.4)<df['interactions'].iloc[i]<=df1['interactions'].quantile(0.6)):47    score+=7.548  elif(df1['interactions'].quantile(0.6)<df['interactions'].iloc[i]<=df1['interactions'].quantile(0.8)):49    score+=1050  elif(df['interactions'].iloc[i]>df1['interactions'].quantile(0.8)):51    score+=12.552  #score by topic % in captions53  if(0<=df['topicInCaptionsPercentage'].iloc[i]<=df1['topicInCaptionsPercentage'].quantile(0.2)):54    score+=2.555  elif(df1['topicInCaptionsPercentage'].quantile(0.2)<df['topicInCaptionsPercentage'].iloc[i]<=df1['topicInCaptionsPercentage'].quantile(0.4)):56    score+=557  elif(df1['topicInCaptionsPercentage'].quantile(0.4)<df['topicInCaptionsPercentage'].iloc[i]<=df1['topicInCaptionsPercentage'].quantile(0.6)):58    score+=7.559  elif(df1['topicInCaptionsPercentage'].quantile(0.6)<df['topicInCaptionsPercentage'].iloc[i]<=df1['topicInCaptionsPercentage'].quantile(0.8)):60    score+=1061  elif(df['topicInCaptionsPercentage'].iloc[i]>df1['topicInCaptionsPercentage'].quantile(0.8)):62    score+=12.563  #score by topic % in words64  if(0<=df['topicInWordsPercentage'].iloc[i]<=df1['topicInWordsPercentage'].quantile(0.2)):65    score+=2.566  elif(df1['topicInWordsPercentage'].quantile(0.2)<df['topicInWordsPercentage'].iloc[i]<=df1['topicInWordsPercentage'].quantile(0.4)):67    score+=568  elif(df1['topicInWordsPercentage'].quantile(0.4)<df['topicInWordsPercentage'].iloc[i]<=df1['topicInWordsPercentage'].quantile(0.6)):69    score+=7.570  elif(df1['topicInWordsPercentage'].quantile(0.6)<df['topicInWordsPercentage'].iloc[i]<=df1['topicInWordsPercentage'].quantile(0.8)):71    score+=1072  elif(df['topicInWordsPercentage'].iloc[i]>df1['topicInWordsPercentage'].quantile(0.8)):73    score+=12.574  #score by topic % in pics75  if(0<=df['topicInPicsPercentage'].iloc[i]<=df1['topicInPicsPercentage'].quantile(0.92)):76    score+=2.577  elif(df1['topicInPicsPercentage'].quantile(0.92)<df['topicInPicsPercentage'].iloc[i]<=df1['topicInPicsPercentage'].quantile(0.94)):78    score+=579  elif(df1['topicInPicsPercentage'].quantile(0.94)<df['topicInPicsPercentage'].iloc[i]<=df1['topicInPicsPercentage'].quantile(0.96)):80    score+=7.581  elif(df1['topicInPicsPercentage'].quantile(0.96)<df['topicInPicsPercentage'].iloc[i]<=df1['topicInPicsPercentage'].quantile(0.98)):82    score+=1083  elif(df['topicInPicsPercentage'].iloc[i]>df1['topicInPicsPercentage'].quantile(0.98)):84    score+=12.585  #score by topic % in pics86  if(0<=df['topicInPicsWordsPercentage'].iloc[i]<=df1['topicInPicsWordsPercentage'].quantile(0.92)):87    score+=2.588  elif(df1['topicInPicsWordsPercentage'].quantile(0.92)<df['topicInPicsWordsPercentage'].iloc[i]<=df1['topicInPicsWordsPercentage'].quantile(0.94)):89    score+=590  elif(df1['topicInPicsWordsPercentage'].quantile(0.94)<df['topicInPicsWordsPercentage'].iloc[i]<=df1['topicInPicsWordsPercentage'].quantile(0.96)):91    score+=7.592  elif(df1['topicInPicsWordsPercentage'].quantile(0.96)<df['topicInPicsWordsPercentage'].iloc[i]<=df1['topicInPicsWordsPercentage'].quantile(0.98)):93    score+=1094  elif(df['topicInPicsWordsPercentage'].iloc[i]>df1['topicInPicsWordsPercentage'].quantile(0.98)):95    score+=12.596  scores.append(score)97df['scores']= scores98half = df['scores'].quantile(0.5)99print(half)100df['microTopic'] = np.where(df['scores']>=half, 1, 0) #assign micrro topic to 1 if the score overcomes the 0.5 percentile of the scores' column101df.to_csv('usersInstagramMicroTopicCC.csv', encoding='UTF8',index=False)...demographic_data_analyzer.py
Source:demographic_data_analyzer.py  
1import pandas as pd2def calculate_demographic_data(print_data=True):3    # Read data from file4    df = pd.read_csv('adult.data.csv')5    # How many of each race are represented in this dataset? This should be a Pandas series with race names as the index labels.6    race_count = df['race'].value_counts()7    # What is the average age of men?8    average_age_men = round(df[df['sex'] == 'Male']['age'].mean(), ndigits=1)9    # What is the percentage of people who have a Bachelor's degree?10    percentage_bachelors = round(((df[df['education'] == 'Bachelors'].shape[0] / df.shape[0]) * 100), ndigits=1)11    # What percentage of people with advanced education (`Bachelors`, `Masters`, or `Doctorate`) make more than 50K?12    # What percentage of people without advanced education make more than 50K?13    14    # with and without `Bachelors`, `Masters`, or `Doctorate`15    higher_education = df[df['education'].isin(['Bachelors','Masters','Doctorate'])]16    17    lower_education = df[~df['education'].isin(['Bachelors','Masters','Doctorate'])]18    # percentage with salary >50K19    higher_education_rich = round(((higher_education[higher_education['salary'] == '>50K'].shape[0] / higher_education.shape[0]) * 100), ndigits=1)20    lower_education_rich = round(((lower_education[lower_education['salary'] == '>50K'].shape[0] / lower_education.shape[0]) * 100), ndigits=1)21    # What is the minimum number of hours a person works per week (hours-per-week feature)?22    min_work_hours = df['hours-per-week'].min()23    # What percentage of the people who work the minimum number of hours per week have a salary of >50K?24    num_min_workers = df[df['hours-per-week'] == min_work_hours]25    rich_percentage = round((num_min_workers[num_min_workers['salary'] == '>50K'].shape[0] / num_min_workers.shape[0] * 100), ndigits=1)26    # What country has the highest percentage of people that earn >50K?27    people = df['native-country'].value_counts()28    rich = df[df['salary'] == '>50K']['native-country'].value_counts()29    highest_earning_country = (rich / people).sort_values(ascending=False).keys()[0]30    31    people_in_highest = df[df['native-country'] == highest_earning_country]32    rich_in_highest = people_in_highest[people_in_highest['salary'] == '>50K']33    highest_earning_country_percentage = round((rich_in_highest.shape[0] / people_in_highest.shape[0] * 100), ndigits=1)34    # Identify the most popular occupation for those who earn >50K in India.35    top_IN_occupation = df[df['salary'] == '>50K']36    top_IN_occupation = top_IN_occupation[top_IN_occupation['native-country'] == 'India']37    top_IN_occupation = top_IN_occupation['occupation'].value_counts()._index[0]38    # DO NOT MODIFY BELOW THIS LINE39    if print_data:40        print("Number of each race:\n", race_count) 41        print("Average age of men:", average_age_men)42        print(f"Percentage with Bachelors degrees: {percentage_bachelors}%")43        print(f"Percentage with higher education that earn >50K: {higher_education_rich}%")44        print(f"Percentage without higher education that earn >50K: {lower_education_rich}%")45        print(f"Min work time: {min_work_hours} hours/week")46        print(f"Percentage of rich among those who work fewest hours: {rich_percentage}%")47        print("Country with highest percentage of rich:", highest_earning_country)48        print(f"Highest percentage of rich people in country: {highest_earning_country_percentage}%")49        print("Top occupations in India:", top_IN_occupation)50    return {51        'race_count': race_count,52        'average_age_men': average_age_men,53        'percentage_bachelors': percentage_bachelors,54        'higher_education_rich': higher_education_rich,55        'lower_education_rich': lower_education_rich,56        'min_work_hours': min_work_hours,57        'rich_percentage': rich_percentage,58        'highest_earning_country': highest_earning_country,59        'highest_earning_country_percentage':60        highest_earning_country_percentage,61        'top_IN_occupation': top_IN_occupation...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
