Best Python code snippet using autotest_python
csv_encoder.py
Source:csv_encoder.py  
...26class SpreadsheetCsvEncoder(CsvEncoder):27    def _total_index(self, group, num_columns):28        row_index, column_index = group['header_indices']29        return row_index * num_columns + column_index30    def _group_string(self, group):31        result = '%s / %s' % (group['pass_count'], group['complete_count'])32        if group['incomplete_count'] > 0:33            result +=  ' (%s incomplete)' % group['incomplete_count']34        if 'extra_info' in group:35            result = '\n'.join([result] + group['extra_info'])36        return result37    def _build_value_table(self):38        value_table = [''] * self._num_rows * self._num_columns39        for group in self._response['groups']:40            total_index = self._total_index(group, self._num_columns)41            value_table[total_index] = self._group_string(group)42        return value_table43    def _header_string(self, header_value):44        return '/'.join(header_value)45    def _process_value_table(self, value_table, row_headers):46        total_index = 047        for row_index in xrange(self._num_rows):48            row_header = self._header_string(row_headers[row_index])49            row_end_index = total_index + self._num_columns50            row_values = value_table[total_index:row_end_index]51            self._append_output_row([row_header] + row_values)52            total_index += self._num_columns53    def encode(self):54        header_values = self._response['header_values']55        assert len(header_values) == 2...present.py
Source:present.py  
...22                    res['model'] = model_name23                results += metrics24        self.results = results25    26    def _group_string(self, res):27        # create a string from the concatenation of values defined in the group28        s = '#'.join('%s=%s' %(key, str(res[key])) for key in self.group if key in res)29        return s30    31    def filter_and_group(self):32        # filter results according to condition33        results_filtered = [res for res in self.results if not False in 34                            [res[key] == val for key, val in self.condition.items()]]35        # find the posible value combinations to group by36        group_strings = set( self._group_string(res) for res in results_filtered)37        # create a dictionary with results for each group38        results_dic = {group_string: {'x': [], 'y': []} for group_string in group_strings}39        for res in results_filtered:40            res_string = self._group_string(res)41            results_dic[res_string]['x'].append(res[self.x])42            results_dic[res_string]['y'].append(res[self.y])43        # sort the results of the group according to x44        for res_string, res_group in results_dic.items():45            x = np.array(res_group['x'])46            y = np.array(res_group['y'])47            sort_indices = np.argsort(x)48            res_group['x'] = x[sort_indices]49            res_group['y'] = y[sort_indices]50        return results_dic51        52    def plot(self, xlim=(), ylim=(), legend_loc=0):53        # get results_dic54        results_dic = self.filter_and_group()...problem_3.py
Source:problem_3.py  
1import numpy as np2from scipy import sparse3from sklearn.covariance import EmpiricalCovariance4from sklearn.datasets import load_svmlight_file5from sklearn.linear_model import LogisticRegression6from sklearn.preprocessing import MultiLabelBinarizer7from skmultilearn.problem_transform import LabelPowerset8from FINALS.pb3.trainBR import get_instance_f19class GroupClassifier:10    def __init__(self, label_groups, no_of_labels) -> None:11        super().__init__()12        self.no_of_labels = no_of_labels13        self.label_groups = label_groups14        self.classifiers = []15    def fit(self, features, labels):16        for label_group in self.label_groups:17            temp_labels = np.zeros((features.shape[0], self.no_of_labels), dtype=int)18            for ix, x in enumerate(features):19                for _label in label_group:20                    temp_labels[ix, _label] = labels[ix, _label]21            _classifier = LabelPowerset(LogisticRegression(solver='liblinear', penalty="l1", C=0.1,22                                                           multi_class='ovr',23                                                           tol=1e-8, max_iter=100))24            _classifier.fit(features, sparse.csr_matrix(temp_labels))25            self.classifiers.append(_classifier)26    def predict(self, features):27        predictions = np.zeros((features.shape[0], self.no_of_labels))28        for _classifier in self.classifiers:29            temp_pred = ([list(line.nonzero()[1]) for line in _classifier.predict(features)])30            for ix, _pred in enumerate(temp_pred):31                if _pred:32                    predictions[ix, _pred] = 133        return predictions34def create_groups(y):35    label_covariance = EmpiricalCovariance().fit(y).covariance_36    _groups = []37    _groups_set = set()38    for i in range(10):39        _group = []40        for j in range(10):41            if i != j and j > i and label_covariance[i][j] >= 0.0024:42                _group.append(j)43        _group_string = str(sorted(_group))44        if _group and _group_string not in _groups_set:45            _groups.append(_group)46            _groups_set.add(_group_string)47    return _groups48x_train, y_train = load_svmlight_file("all_train.csv", multilabel=True, n_features=30, zero_based=True)49x_test, y_test = load_svmlight_file("all_test.csv", multilabel=True, n_features=30, zero_based=True)50tran = MultiLabelBinarizer()51y_train2 = tran.fit_transform(y_train)52y_test2 = tran.fit_transform(y_test)53groups = create_groups(np.append(y_train2, y_test2, axis=0))54groups = [[0, 1, 2], [3, 4, 5, 9], [6, 7, 8]]55print("Groups=>", groups)56group_classifier = GroupClassifier(groups, 10)57group_classifier.fit(x_train, y_train2)58y_train_pred = group_classifier.predict(x_train)59tr1, tr2 = get_instance_f1(y_train_pred, y_train)60print("datasets\taccuracy\tf1")61print("train\t" + str(tr1) + "\t" + str(tr2))62y_test_pred = group_classifier.predict(x_test)63test1, test2 = get_instance_f1(y_test_pred, y_test)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
