Best Python code snippet using autotest_python
makedatafile_t2kcc0pi.py
Source:makedatafile_t2kcc0pi.py  
1from ROOT import *2from array import *3def GetMiddle(mystr):4    lims = mystr.strip().split(" - ")5    val = (float(lims[0]) + float(lims[1]))/2.06    return val7def GetLowEdge(mystr):8    lims = mystr.strip().split(" - ")9    val = (float(lims[0]) + 0.00001)10    11    return val12def GetHighEdge(mystr):13    14    lims = mystr.strip().split(" - ")15    val = (float(lims[1]) - 0.00001)16           17    return val18           19def GetIndex(mystr):20    lims = mystr.split("-")21    return int(lims[0]), int(lims[1])22outfile = TFile("T2K_CC0PI_2DPmuCosmu_Data.root","RECREATE")23# ANALYSIS I24#______________________________25xedge   =  [0.0, 0.3, 0.4, 0.5, 0.65, 0.8, 0.95, 1.1, 1.25, 1.5, 2.0, 3.0, 5.0, 30.0]26yedge   =  [-1.0, 0.0, 0.6, 0.7, 0.8, 0.85, 0.9, 0.94, 0.98, 1.0]27datahist = TH2D("analysis1_data","analysis1_data",28                len(xedge)-1, array('f',xedge),29                len(yedge)-1, array('f',yedge))30           31maphist = datahist.Clone("analysis1_map")32maphist.SetTitle("analysis1_map")33           34counthist = datahist.Clone("analysis1_entrycount")35datapoly = TH2Poly("datapoly","datapoly", 0.0,30.0, -1.0, 1.0)36hist = None37binedges = []38histedgeslist = []39xsecvals = []40histxseclist = []41binlimits = [3,8,15,22,30,39,47,58,67]42with open("cross-section_analysisI.txt") as f:43    count = 044    for line in f:45        count += 146        47        if (count < 4): continue48        data = line.strip().split("|")49        if (len(data) < 1): continue50        ibin = int(   data[0]  ) + 151        52        xval = round(float(GetLowEdge( data[2] )),4)53        yval = round(float(GetLowEdge( data[1] )),4)54        xhig = round(float(GetHighEdge( data[2] )),4)55        yhig = round(float(GetHighEdge( data[1] )),4)56        57        xsec = float( data[3]  ) * 1E-3858        datapoly.AddBin( xval, yval, xhig, yhig )59        datapoly.SetBinContent( datapoly.GetNumberOfBins(), xsec)60        binedges.append( xval )61        xsecvals.append( xsec )62        if ibin in binlimits: 63            binedges.append( xhig )64            histedgeslist.append(binedges)65            histxseclist.append(xsecvals)66            binedges = []67            xsecvals = []68        datahist.Fill(xval, yval, xsec)69        counthist.Fill(xval, yval, 1.0)70        for i in range(maphist.GetNbinsX()):71            for j in range(maphist.GetNbinsY()):72                xcent = maphist.GetXaxis().GetBinCenter(i+1)73                ycent = maphist.GetYaxis().GetBinCenter(j+1)74                if (xcent > xval and xcent < xhig and75                    ycent > yval and ycent < yhig):76                    maphist.SetBinContent(i+1,j+1, ibin)77# Get Covariances (keep in 1E-38 cm^2)                 \78nbins = 6779statcov = TH2D("analysis1_statcov","analysis1_statcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));80systcov = TH2D("analysis1_systcov","analysis1_systcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));81normcov = TH2D("analysis1_normcov","analysis1_normcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));82totcov = TH2D("analysis1_totcov","analysis1_totcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));83with open("covariance_statisticUncertainty_analysisI.txt") as f:84    count = 085    for line in f:86        count += 187        if (count < 4): continue88        data = line.strip().split("|")89        if (len(data) < 1): continue90        xi, yi = GetIndex(data[0])91        cov    = float(data[1])92        statcov.SetBinContent(xi + 1, yi + 1, cov)93with open("covariance_shapeSystematics_analysisI.txt") as f:94    count = 095    for line in f:96        count += 197        if (count < 4): continue98        data = line.strip().split("|")99        if (len(data) < 1): continue100        xi, yi = GetIndex(data[0])101        cov    = float(data[1])102        systcov.SetBinContent(xi + 1, yi + 1, cov)103with open("covariance_fluxNormalizationSystematics_analysisI.txt") as f:104    count = 0105    for line in f:106        count += 1107        if (count < 4): continue108        data = line.strip().split("|")109        if (len(data) < 1): continue110        xi, yi = GetIndex(data[0])111        cov    = float(data[1])112        normcov.SetBinContent(xi + 1, yi + 1, cov)113totcov.Add(systcov)114totcov.Add(statcov)115totcov.Add(normcov)116data1D = TH1D("datahist","datahist", datapoly.GetNumberOfBins(), 0.0, float(datapoly.GetNumberOfBins()));117for i in range(datapoly.GetNumberOfBins()):118    data1D.SetBinContent(i+1, datapoly.GetBinContent(i+1));119    data1D.SetBinError(i+1, sqrt(totcov.GetBinContent(i+1,i+1))*1E-38)120outfile.cd()121for i, obj in enumerate(histedgeslist):122    print obj123    hist = TH1D("dataslice_" + str(i), "dataslice_" + str(i), len(obj)-1, array('f',obj))124    for j in range(hist.GetNbinsX()):125        hist.SetBinContent(j+1, histxseclist[i][j])126    hist.GetXaxis().SetRangeUser(obj[0], obj[len(obj)-2])127    hist.Draw("HIST")128    gPad.Update()129    hist.SetNameTitle("dataslice_" + str(i),"dataslice_" + str(i))130    hist.Write()131outfile.cd()132datahist.Write()133counthist.Write()134maphist.Write()135datapoly.Write()136data1D.Write()137statcov.Write()138systcov.Write()139totcov.Write()140normcov.Write()141# ANALYSIS II142#______________________________143xedge   =  [0.2, 0.35, 0.5, 0.65, 0.8, 0.95, 1.1, 1.25, 1.5, 2.0, 3.0, 5.0, 30.0]144yedge   =  [0.6, 0.7, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 1.0]145datahist = TH2D("analysis2_data","analysis2_data",146                len(xedge)-1, array('f',xedge),147                len(yedge)-1, array('f',yedge))148maphist = datahist.Clone("analysis2_map")149maphist.SetTitle("analysis2_map")150counthist = datahist.Clone("analysis2_entrycount")151# Get Data Entries152entries = []153count = 0154with open("rps_crossSection_analysis2.txt") as f:155    for line in f:156        count += 1157        if (count < 4): continue158        data = line.strip().split("|")159        if (len(data) < 1): continue160        ibin = int(   data[0]  ) + 1161        xval = GetMiddle( data[2] )162        yval = GetMiddle( data[1] )163        xsec = float( data[3]  ) * 1E-38164        datahist.Fill(xval, yval, xsec)165        maphist.Fill(xval, yval, ibin)166           167        counthist.Fill(xval, yval, 1.0)168     #   print ibin, "Map Value"169        170# Get N Bins171nbins = int(maphist.GetMaximum())172print "NBins I = ", nbins173# Get Covariances (keep in 1E-38 cm^2)174statcov = TH2D("analysis2_statcov","analysis2_statcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));175systcov = TH2D("analysis2_systcov","analysis2_systcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));176normcov = TH2D("analysis2_normcov","analysis2_normcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));177totcov = TH2D("analysis2_totcov","analysis2_totcov", nbins, 0.0, float(nbins), nbins, 0.0, float(nbins));178with open("rps_statsCov_analysis2.txt") as f:179    count = 0180    for line in f:181        count += 1182        183        if (count < 4): continue184        data = line.strip().split("|")185        if (len(data) < 1): continue186        xi, yi = GetIndex(data[0])187        cov    = float(data[1])188        statcov.SetBinContent(xi + 1, yi + 1, cov)189with open("rps_systCov_analysis2.txt") as f:190    count = 0191    for line in f:192        count += 1193        194        if (count < 4): continue195        data = line.strip().split("|")196        if (len(data) < 1): continue197        198        xi, yi = GetIndex(data[0])199        cov    = float(data[1])200        201        systcov.SetBinContent(xi + 1, yi + 1, cov)202with open("rps_fluxNormCov_analysis2.txt") as f:203    count = 0204    for line in f:205        count += 1206        207        if (count < 4): continue208        data = line.strip().split("|")209        if (len(data) < 1): continue210        211        xi, yi = GetIndex(data[0])212        cov    = float(data[1])213        214        normcov.SetBinContent(xi + 1, yi + 1, cov)215        216totcov.Add(systcov)217totcov.Add(statcov)218totcov.Add(normcov)219outfile.cd()220datahist.Write()221maphist.Write()222counthist.Write()223statcov.Write()224systcov.Write()225totcov.Write()    226normcov.Write()    ...finalproject.py
Source:finalproject.py  
1import pandas as pd2import numpy as np3import os4# df = pd.read_csv('USvideos_new.csv', engine='python')5# print(df.head(5))6# from textblob import TextBlob7# pola = []8# polas = []9# subj = []10# subjs = []11# for index, row in df.iterrows():12#     analysis = TextBlob(row['title'])13#     pola.append(analysis.sentiment[0])14#     subj.append(analysis.sentiment[1])15#     if type(row['description']) == type('str'):16#         analysis2 = TextBlob(row['description'])17#         polas.append(analysis2.sentiment[0])18#         subjs.append(analysis2.sentiment[1])19#     else:20#         polas.append(0)21#         subjs.append(0)22# df['polarity'] = pola23# df['subjectivity'] = subj24# df['polarity_description'] = polas25# df['subjectivity_description'] = subjs26# print(df.head(5))27# df.to_csv('out.csv')28# df = pd.read_csv('UKvideos_new.csv', engine='python')29# print(df.head(5))30# from textblob import TextBlob31# pola = []32# polas = []33# subj = []34# subjs = []35# for index, row in df.iterrows():36#     analysis = TextBlob(row['title'])37#     pola.append(analysis.sentiment[0])38#     subj.append(analysis.sentiment[1])39#     if type(row['description']) == type('str'):40#         analysis2 = TextBlob(row['description'])41#         polas.append(analysis2.sentiment[0])42#         subjs.append(analysis2.sentiment[1])43#     else:44#         polas.append(0)45#         subjs.append(0)46# df['polarity'] = pola47# df['subjectivity'] = subj48# df['polarity_description'] = polas49# df['subjectivity_description'] = subjs50# print(df.head(5))51# df.to_csv('outuk.csv')52df = pd.read_csv('CAvideos_new.csv', engine='python')53print(df.head(5))54from textblob import TextBlob55pola = []56polas = []57subj = []58subjs = []59for index, row in df.iterrows():60    analysis = TextBlob(row['title'])61    pola.append(analysis.sentiment[0])62    subj.append(analysis.sentiment[1])63    if type(row['description']) == type('str'):64        analysis2 = TextBlob(row['description'])65        polas.append(analysis2.sentiment[0])66        subjs.append(analysis2.sentiment[1])67    else:68        polas.append(0)69        subjs.append(0)70df['polarity'] = pola71df['subjectivity'] = subj72df['polarity_description'] = polas73df['subjectivity_description'] = subjs74print(df.head(5))...analysis2_csv_tweets_genre_yrmnth.py
Source:analysis2_csv_tweets_genre_yrmnth.py  
1#Analysis-2 Starting here2import pandas as pd3import datetime4gen=pd.read_csv('genre.csv')5tweets=pd.read_csv('processed.csv')6mv=pd.read_csv('processed_movies.csv')7analysis2=tweets[['imdbID','created_year','created_month','retweet_count','favorite_count']]8analysis2['calc_ret_fav_count']=analysis2['retweet_count']+analysis2['favorite_count']9mv=mv[['Released','imdbID']]10mv=mv[~(mv['Released'].isnull())]11mv['Released_DateTime'] = mv['Released'].apply(lambda x: pd.to_datetime(str(x), format='%d %b %Y'))12mv['Released_Year']=mv['Released'].apply(lambda x: pd.to_datetime(str(x), format='%d %b %Y').year)13mv['Released_Year']=pd.to_numeric(mv['Released_Year']).round()14mv['Released_Month']=mv['Released'].apply(lambda x: pd.to_datetime(str(x), format='%d %b %Y').month)15mv['Released_Monthname']=mv['Released'].apply(lambda x: pd.to_datetime(str(x), format='%d %b %Y').strftime('%b'))16#mv['Released_Month']=mv['Released'].month17mv=mv.merge(gen, left_on=['imdbID'], right_on=['imdbID'], how='inner')18#print(mv.head(5))19analysis2=analysis2.merge(mv,left_on=['imdbID','created_year'], right_on=['imdbID','Released_Year'], how='inner')20analysis2=analysis2[['Genre','calc_ret_fav_count','created_year','Released_Monthname','Released_Month']]21analysis2=analysis2.groupby(['Genre','created_year','Released_Monthname','Released_Month'],as_index=False)['calc_ret_fav_count'].mean()...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
