Best Python code snippet using autotest_python
main.py
Source:main.py  
1INCODE_MATRIX = [[10, -3, -2, -1],2                 [3, 10, -3, -2],3                 [2, 3, 10, -3],4                 [1, 2, 3, 10]]56INCODE_F_VECTOR = [31, -17, 49, -19]78# globalne zmienne do sprawdzania (ro)zbieżnoÅci metody9divergence_counter = 010last_diff_check = 99999911check_iteration = 1121314def get_sq_matrix(n):15    """16    funkcja zwraca macierz o rozmiarze NxN utworzonÄ
17    z danych wprowadzanych przez użytkownika1819    :param n: integer20    :return: list[n][n]21    """22    matrix = []23    print("Wprowadź wspóÅczynniki ukÅadu równaÅ: ")24    for i in range(1, n+1):25        row = []26        for j in range(1, n+1):27            prompt = "a" + str(i) + str(j) + ": "28            row.append(int(input(prompt)))29        matrix.append(row)30    return matrix313233def get_start_vector(n):34    """35    funkcja zwraca wektor wstepnego przybliżenia utworzony36    z podanych przez użytkownika danych3738    :param n: int39    :return: list[n]40    """41    vector = []42    print("Wprowadź wektor wstÄpnych przybliżeÅ rozwiÄ
zania: ")43    for i in range(1, n+1):44        prompt = "x" + str(i) + ": "45        vector.append(int(input(prompt)))46    return vector474849def get_f_vector(n):50    """51    funkcja zwraca wektor f utworzony z podanych przez użytkownika danych5253    :param n: int54    :return: list[n]55    """56    vector = []57    print("Wprowadź wektor f: ")58    for i in range(1, n + 1):59        prompt = "f" + str(i) + ": "60        vector.append(int(input(prompt)))61    return vector626364def define_size():65    """66    funkcja zwraca podany przez użytkownika rozmiar macierzy6768    :return: n69    """70    return int(input("Zdefiniuj rozmiar macierzy (NxN): "))717273def make_choice():74    """75    funkcja pozwala użytkownikowi wybraÄ czy chce skorzystaÄ76    z macierzy wpisanej do programu, czy podaÄ nowÄ
 samemu7778    :return: boolean79    """80    print("Czy chcesz użyÄ wÅasnej macierzy? (T/N)")81    ans = ""82    while ans not in ["t", "n"]:83        ans = input().lower()84    return "t" in ans858687def display(vector, precision):88    """89    funkcja wyÅwietla wyniki dziaÅania programu9091    :param vector: list[n][n]92    :param precision: float93    :return: None94    """95    print(f"Przybliżenie rozwiÄ
zania ukÅadu z precyzjÄ
 = {precision}")96    for i in range(len(vector)):97        print(f"x{i+1} = {round(vector[i], 5)}")9899100def divergence_check(prev, curr):101    """102    funkcja sprawdza czy metoda jest rozbieżna dla podanego ukÅadu równaÅ103104    :param prev:105    :param curr:106    :return:107    """108    global last_diff_check109    global divergence_counter110    global check_iteration111    divergence_list = []112    for i in range(len(curr)):113        divergence_list.append(abs(prev[i] - curr[i]))114    current_max_divergence = max(divergence_list)115    print("p", check_iteration, " = ", round(current_max_divergence, 10), sep="")116    check_iteration += 1117    if current_max_divergence <= last_diff_check:118        last_diff_check = current_max_divergence119        divergence_counter = 0120    else:121        last_diff_check = current_max_divergence122        divergence_counter += 1123    if divergence_counter >= 5:124        print("Metoda jest rozbieżna dla podanego ukÅadu równaÅ")125        exit()126127128def check_precision(prev, curr, acc):129    """130    funkcja sprawdza czy kolejna iteracja osiÄ
gnÄÅa wymagane przybliżenie131132    :param prev: list[n]133    :param curr: list[n]134    :param acc: float135    :return: boolean136    """137    divergence_check(prev, curr)138    results = []139    for i in range(len(curr)):140        results.append(abs(prev[i] - curr[i]) > acc)141    for element in results:142        if element:143            return True144    else:145        return False146147148def gauss_seidl(matrix, f_vector, x_vector, precision):149    """150    funkcja przybliża z zadanÄ
 dokÅadnoÅciÄ
 rozwiÄ
zanie ukÅadu151    równaÅ na podstawie macierzy wspóÅczynników,152    wektora f oraz wektora wstÄpnych przybliżeÅ rozwiÄ
zania153154    :param matrix: list[n][n]155    :param f_vector: list[n]156    :param x_vector: list[n]157    :param precision: float158    :return: list[n]159    """160    counter = 1161    previous_vector = x_vector.copy()162    try:163        for i in range(len(x_vector)):164            if i == 0:165                frac_top = -sum([matrix[i][j] * x_vector[j] for j in range(i + 1, len(x_vector))]) + f_vector[i]166                x_vector[i] = frac_top / matrix[i][i]167            else:168                right_side = -sum([matrix[i][j] * x_vector[j] for j in range(0, i)])169                left_side = -sum([matrix[i][j] * x_vector[j] for j in range(i + 1, len(x_vector))]) + f_vector[i]170                x_vector[i] = (right_side - left_side) / matrix[i][i]171        while check_precision(previous_vector, x_vector, precision):172            previous_vector = x_vector.copy()173            for i in range(len(x_vector)):174                if i == 0:175                    frac_top = -sum([matrix[i][j] * x_vector[j] for j in range(i+1, len(x_vector))]) + f_vector[i]176                    x_vector[i] = frac_top / matrix[i][i]177                else:178                    right_side = -sum([matrix[i][j] * x_vector[j] for j in range(0, i)])179                    left_side = -sum([matrix[i][j] * x_vector[j] for j in range(i+1, len(x_vector))]) + f_vector[i]180                    x_vector[i] = (right_side - left_side)/matrix[i][i]181            counter += 1182    except ZeroDivisionError:183        print("Macierz zawiera zera na przekÄ
tnej, uruchom program jeszcze raz zamieniajÄ
c kolejnoÅÄ wierszy.")184        exit()185    print("Wykonano iteracji:", counter)186    return x_vector187188189def main():190    print("Program używa metody Gaussa-Seidla do przybliżenia rozwiÄ
zania ukÅadu równaÅ z zadanÄ
 dokÅadnoÅciÄ
.")191    if make_choice():192        matrix_size = define_size()193        matrix = get_sq_matrix(matrix_size)194        f_vector = get_f_vector(matrix_size)195        x_vector = get_start_vector(matrix_size)196    else:197        matrix = INCODE_MATRIX.copy()198        f_vector = INCODE_F_VECTOR.copy()199        x_vector = get_start_vector(len(matrix))200    precision = float(input("Zadaj dokÅadnoÅÄ: "))201    approximation = gauss_seidl(matrix, f_vector, x_vector, precision)202    display(approximation, precision)203204205if __name__ == '__main__':
...inet.py
Source:inet.py  
...68        logger.info("Loaded data from {}".format(data_file))69        return result70    def _scrape_html(self):71        for k, v in self.data.items():72            if self.check_iteration(v.get('iteration')):73                url = v['website']74                try:75                    v['html'] = self.html_scraper.scrape(url)76                    logger.info("Stored html for {}".format(url))77                except TypeError:78                    logger.warn("No html stored for {}".format(url))79                    v['html'] = None80    def _scrape_twitter_handles(self):81        for k, v in self.data.items():82            if self.check_iteration(v.get('iteration')):83                url = v['website']84                try:85                    for html in v.get('html'):86                        v['twitter_handles'] = self.html_scraper.twitter_handles(html)  # noqa87                    logger.info("Found {} twitter handles in {}"88                                .format(len(v.get('twitter_handles', [])), url))  # noqa89                except TypeError:90                    logger.warn("No twitter handles stored for {}".format(url))91                    v['twitter_handles'] = None92    def twitter_followers(self):93        for k, v in self.data.items():94            if self.check_iteration(v.get('iteration')):95                v['twitter_followers'] = self.twitter_handler.followers(v['twitter_handles'])  # noqa96    def twitter_following(self):97        for k, v in self.data.items():98            if self.check_iteration(v.get('iteration')):99                v['twitter_following'] = self.twitter_handler.following(v['twitter_handles'])  # noqa100    def mutual_follows(self):101        for k, v in self.data.items():102            v['mutual_follows'] = {}103            if self.check_iteration(v.get('iteration')):104                for handle in v['twitter_followers']:105                    followers = v['twitter_followers'][handle]106                    following = v['twitter_following'][handle]107                    mutual_set = set(followers).intersection(following)108                    mutual_list = list(mutual_set)109                v['mutual_follows'][handle] = mutual_list110    def _get_company_data(self):111        for k, v in self.data.items():112            if self.check_iteration(v.get('iteration')):113                v['company_data'] = self.ch_client.get_company_data(k, v)114    def _shared_directors(self):115        for k, v in self.data.items():116            if self.check_iteration(v.get('iteration')):117                self.data[k]['directors'] = self.ch_client.get_directors(k, v)118    def check_iteration(self, iteration):119        return iteration == self._iteration120    def start(self, iterations=1):121        """Start the iteration process.122        Starts the iteration process that expands the original seed123        data.124        Parameters125        ----------126        iterations: int, default 5127            Number of iterations to complete128        Returns129        -------130        None131        """132        logger.info("Starting data crawl. Number of iterations is {}"...euler52.py
Source:euler52.py  
1iteration_works = False2i = 03def check_iteration(i):4    stuff5while not iteration_works:6    i += 17    if check_iteration(i):8        iteration_works = True...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
