Best Python code snippet using avocado_python
preprocess.py
Source:preprocess.py  
...29        30        self.preprocessing(preprocess, func_dic)31        self.get_warps(preprocess)32        33        preprocess.connect([(inputnode, preprocess.get_node('Fregistration'), [('T1w', 'T1w'),34                                                                              ('mask', 'mask')]),35                            #(inputnode, preprocess.get_node('bet'), [('T1w', 'inputnode.in_files')]),36                            (inputnode, preprocess.get_node('bet'), [('T1w', 'T1w')]),37                            (inputnode, preprocess.get_node('slicetimer'), [('TR', 'time_repetition')]),38                            (inputnode, preprocess.get_node('extract'), [('bold', 'in_file')]),39                            (inputnode, preprocess.get_node('warp'), [('mask', 'ref_file')]),40                            (inputnode, preprocess.get_node('prelim'), [('mask', 'reference')]),41                            (inputnode, preprocess.get_node('dilateref'), [('mask', 'in_file')]),42                            (inputnode, preprocess.get_node('Fmni'), [('mask', 'mniMask')]),43                            (preprocess.get_node('bet_strip'), preprocess.get_node('warp'), [('out_file', 'in_file')]),44                            (preprocess.get_node('bet_strip'), preprocess.get_node('invwarp'), [('out_file', 'brain')]),45                            (preprocess.get_node('Fregistration'), preprocess.get_node('invwarp'), [('out_mat', 'coregmat')]),46                            (preprocess.get_node('Fmni'), preprocess.get_node('invwarp'), [('brainmask', 'brainmask')]),47                            (preprocess.get_node('bet_strip'), preprocess.get_node('prelim'), [('out_file', 'in_file')]),48                            (preprocess.get_node('bet_strip'), preprocess.get_node('decision'), [('out_file', 'mask')]),49                            (preprocess.get_node('bet_strip'), preprocess.get_node('dilatebrain'), [('out_file', 'in_file')]),50                            (preprocess.get_node('warp'), preprocess.get_node('Fmni'), [('field_file', 'warp')]),51                            ])52        53        outnode = Node(IdentityInterface(fields=['smoothed', 'segmentations', 'warp_file', 'brain', 'brainmask', 'outliers', 'unsmoothed', 'invwarp', 'keepreg', 'keepsmooth']), name='outnode')54        55        preprocess.connect([(preprocess.get_node('bet_strip'), outnode, [('out_file', 'brain')]),56                            (preprocess.get_node('Fmni'), outnode, [('segmentations', 'segmentations')]),57                            (preprocess.get_node('Fsmooth'), outnode, [('smooth', 'smoothed')]),58                            (preprocess.get_node('Fsmooth'), outnode, [('files', 'keepsmooth')]),59                            #(preprocess.get_node('warp'), outnode, [('field_file', 'warp_file')]),60                            (preprocess.get_node('Fmni'), outnode, [('warp', 'warp_file')]),61                            (preprocess.get_node('invwarp'), outnode, [('invwarp', 'invwarp')]),62                            #(preprocess.get_node('mcflirt'), outnode, [('par_file', 'mc_par')]),63                            (preprocess.get_node('art'), outnode, [('outlier_files', 'outliers')]),64                            #(preprocess.get_node('Fregistration'), outnode, [('out_mat', 'coregmat')]),65                            (preprocess.get_node('Fregistration'), outnode, [('files', 'keepreg')]),66                            (preprocess.get_node('fillmask'), outnode, [('out_file', 'brainmask')]),67                            ])68        69        if 'rest' in self.task:70            preprocess.connect([(preprocess.get_node('Fregress'), outnode, [('forreho', 'unsmoothed')]),71                                ])72        else:73            preprocess.connect([(preprocess.get_node('Fmni'), outnode, [('warped', 'unsmoothed')]),74                                ])75        76        77        write = Node(Function(input_names=['base_dir', 'pipeline_st', 'task']+intermediates), name='write')78        write.inputs.function_str = get_sink(intermediates)79        write.inputs.base_dir = self.base_dir80        write.inputs.pipeline_st = self.pipeline81        write.inputs.task = self.task82        83        preprocess.connect([(preprocess.get_node('bet_strip'), write, [('out_file', 'brain')]),84                            (preprocess.get_node('Fsmooth'), write, [('smooth', 'smoothed')]),85                            (preprocess.get_node('Fregistration'), write, [('out_mat', 'coregmat')]),86                            (preprocess.get_node('fast'), write, [('tissue_class_files', 'segmentations')]),87                            (preprocess.get_node('warp'), write, [('field_file', 'warp_field'),88                                                                  ('warped_file', 'warp')]),89                            (preprocess.get_node('invwarp'), write, [('invwarp', 'invwarp')]),90                            (preprocess.get_node('art'), write, [('outlier_files', 'outliers'),91                                                                 ('plot_files', 'plots')]),92                            ])93        94        return preprocess95    96    def preprocessing(self, flow, func_dic):97        from preprocessing.functions import function_str, decision98        self.coregistration(flow, func_dic)99        100        extract = Node(ExtractROI(t_size=-1, output_type='NIFTI_GZ'), name='extract')101        mcflirt = Node(MCFLIRT(save_plots=True, output_type='NIFTI_GZ'), name='mcflirt')102        103        slicetimer = Node(SliceTimer(index_dir=False, interleaved=True, output_type='NIFTI_GZ'), name='slicetimer')104            105        func_str, input_names = function_str('smooth', func_dic)106        Fsmooth = Node(Function(input_names=input_names,107                                output_names=['smooth', 'files']), name='Fsmooth')108        Fsmooth.inputs.function_str = func_str109        110        decision = Node(Function(input_names=['mask', 'mc_mean', 'mc', 'st', 'slice_correct', 'mean_vol'],111                                 output_names=['start_img', 'corrected_img', 'mask'], function=decision), name='decision')112        decision.inputs.mean_vol = ''113        decision.inputs.st = ''114        115        art = Node(ArtifactDetect(norm_threshold=2,116                                  zintensity_threshold=3,117                                  mask_type='spm_global',118                                  parameter_source='FSL',119                                  use_differences=[True, False],120                                  plot_type='svg'),121                   name="art")122        123        fillmask = Node(UnaryMaths(operation='fillh'), name='fillmask')124        125        func_str, input_names = function_str('regress', func_dic)126        Fregress = Node(Function(input_names=input_names,127                                 output_names=['warped', 'forreho']), name='Fregress', mem_gb=3)128        Fregress.inputs.function_str = func_str129        130        if 'rest' in self.task:131            Fregress.inputs.rest = True132        else:133            Fregress.inputs.rest = False134            135        flow.connect([(extract, mcflirt, [('roi_file', 'in_file')]),136                      (mcflirt, slicetimer, [('out_file', 'in_file')]),137                      (mcflirt, decision, [('mean_img', 'mean_vol'),138                                           ('out_file', 'mc')]),139                      (mcflirt, art, [('par_file', 'realignment_parameters')]),140                      (slicetimer, decision, [('slice_time_corrected_file', 'st')]),141                      (decision, flow.get_node('Fregistration'), [('start_img', 'start_img'),142                                                                  ('corrected_img', 'corrected_img'),143                                                                  ('mask', 'brainmask')]),144                      (decision, flow.get_node('Fmni'), [('mask', 'brainmask')]),145                      (decision, flow.get_node('Fmni'), [('start_img', 'start_img')]),146                      (flow.get_node('Fmni'), flow.get_node('boldmask'), [('start_img', 'inputnode.in_file')]),147                      #(decision, flow.get_node('boldmask'), [('start_img', 'inputnode.in_file')]),148                      (flow.get_node('boldmask'), fillmask, [('outputnode.skull_stripped_file', 'in_file')]),149                      (flow.get_node('Fregistration'), art, [('warped', 'realigned_files')]),150                      (flow.get_node('Fmni'), Fregress, [('warped', 'unsmoothed')]),151                      (flow.get_node('Fmni'), Fregress, [('brainmask', 'mask')]),152                      (flow.get_node('Fmni'), Fregress, [('segmentations', 'segmentations')]),153                      #(art, Fregress, [('outlier_files', 'outliers')]),154                      (mcflirt, Fregress, [('par_file', 'mc_par')]),155                      (Fregress, Fsmooth, [('warped', 'warped')]),156                      (fillmask, Fsmooth, [('out_file', 'mask')]),157                      ])158        159    def coregistration(self, flow, func_dic):#SEARCH TO SEE IF BET ALREADY RUN AND OUTPUT SAVED160        from preprocessing.functions import function_str, strip_container161        from preprocessing.workflows import check4brains162        163        bet = Node(Function(input_names=['data_dir', 'T1w'], output_names='out_file', function=check4brains), name='bet') #init_brain_extraction_wf(name='bet')164        bet.inputs.data_dir = self.data_dir165        166        bet_strip = Node(Function(input_names='in_file', output_names='out_file', function=strip_container), name='bet_strip')...graphs.py
Source:graphs.py  
1import networkx as nx2import matplotlib.pyplot as plt3G = nx.DiGraph()4n = 85def get_node(num_we, num_wf):6    return str(num_we) + 'WE_' + str(num_wf) + 'WF'7def get_brg_1():8    G.add_nodes_from([str(k) + 'WE_' + str(n - k) + 'WF' for k in range(0, n + 1)])9    G.add_edge(get_node(0, 8), get_node(1, 7))10    G.add_edge(get_node(1, 7), get_node(2, 6))11    G.add_edge(get_node(2, 6), get_node(3, 5))12    G.add_edge(get_node(3, 5), get_node(2, 6))13    G.add_edge(get_node(4, 4), get_node(3, 5))14    G.add_edge(get_node(4, 4), get_node(5, 3))15    G.add_edge(get_node(5, 3), get_node(6, 2))16    G.add_edge(get_node(7, 1), get_node(6, 2))17    G.add_edge(get_node(8, 0), get_node(7, 1))18    pos = nx.circular_layout(G)19    nx.draw(G, pos, node_size=3400, with_labels=True, font_color='w')20    nx.draw_networkx_nodes(G, pos, nodelist=[get_node(0, 8), get_node(1, 7), get_node(4, 4), get_node(5, 3), get_node(7, 1), get_node(8, 0)], node_color='b', node_size=3400)21    nx.draw_networkx_nodes(G, pos, nodelist=[get_node(2, 6), get_node(3, 5), get_node(6, 2)], node_color='b', node_size=3400, alpha=0.25)22    plt.show()23def get_brg_2():24    G.add_nodes_from([str(k) + 'WE_' + str(n - k) + 'WF' for k in range(0, n + 1)])25    G.add_edge(get_node(0, 8), get_node(1, 7))26    G.add_edge(get_node(1, 7), get_node(2, 6))27    G.add_edge(get_node(2, 6), get_node(3, 5))28    G.add_edge(get_node(3, 5), get_node(4, 4))29    G.add_edge(get_node(4, 4), get_node(5, 3))30    G.add_edge(get_node(5, 3), get_node(6, 2))31    G.add_edge(get_node(6, 2), get_node(7, 1))32    G.add_edge(get_node(7, 1), get_node(8, 0))33    pos = nx.circular_layout(G)34    nx.draw(G, pos, node_size=3400, with_labels=True, font_color='w')35    nx.draw_networkx_nodes(G, pos, nodelist=[get_node(0, 8),36                                             get_node(1, 7),37                                             get_node(2, 6),38                                             get_node(3, 5),39                                             get_node(4, 4),40                                             get_node(5, 3),41                                             get_node(6, 2),42                                             get_node(7, 1)], node_color='b', node_size=3400)43    nx.draw_networkx_nodes(G, pos, nodelist=[get_node(8, 0)], node_color='b', node_size=3400, alpha=0.25)44    plt.show()...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
