Best Python code snippet using avocado_python
shell.py
Source:shell.py  
1from django.urls import reverse2from django.test.utils import setup_test_environment3from django.contrib.auth.models import User4from django.db.models import Q5from home.models import *6from home.search import *7# from searchengine.forms import *8# import requests9import os10import sys11import random12import cv213# from tabulate import tabulate14setup_test_environment()15from django.test import Client16c = Client()17from django.core.files import File18def populate_user_database():19    os.chdir('./static/books')20    id_=int(input('Enter ID: '))21    b=Book.objects.get(id=id_)22    os.chdir(b.title)23    os.chdir('content')24    ids=[]25    for file in os.listdir('.'):26        print(file)27        with open(file,'r') as f:28            r=f.readlines()29        r=[i.strip() for i in r]30        content='\n'.join(r)31        p=Page(pagetitle=file.strip(), content=content, book=b)32        p.save()33        ids.append(p.id)34    os.chdir('../images')35    for i in ids:36        pt='.'.join(Page.objects.get(id=i).pagetitle.split('.')[:-1])37        # pt=pt.split('.')[:-1]+'jpg'38        p=Page.objects.get(id=i)39        p.image.save(pt,File(open(pt,'rb')))40def flush_user_database():41    p = Page.objects.all()42    if len(p):43        for i in p:44            i.delete()45    b = Book.objects.all()46    if len(b):47        for i in b:48            i.delete()49def processing():50    import os51    import shutil52    import glob53    import xml.etree.ElementTree as et54    valid_image_ext = ['jpg','tif','jpeg','TIF','JPG','JPEG','PNG','png']55    cwd = os.getcwd()56    os.chdir("/home/ndlsearch19/rename_telugu/Telugu")57    book_path_folder = os.getcwd()58    book_name_lan = os.getcwd().split("/")[-1]59    60    #print(book_path_folder)61    book_list = Book.objects.all()62    test_list=[]63    for i in book_list:64        test_list.append(i.title)65    # print(test_list)66    count = 167    book_path_list = glob.glob('*')68    book_path_list = [i for i in book_path_list if os.path.isdir(i)]69    print(book_path_list)70    # cwd = os.getcwd()71    test=[]72    for book_path in book_path_list:73        print(book_path)74        print("/n/n")75        test_list_content = []76        test_list_images = []77        test_list_segment = []78        nameofthebook = book_path.split("/")[-1]79        #print(nameofthebook)80        os.chdir(book_path_folder+"/"+book_path)81        print(os.getcwd())82        images = []83        for i in valid_image_ext:84            images += glob.glob('Images/*.{}'.format(i))85        images = list(set(images))86        # print(images)87        content = glob.glob('Predictions_CRNN/*.txt')88        # print(content)89        #print(len(content))90        #print(len(images))91        segment = glob.glob('Segmentations/*.txt') 92        for i in images:93            i=i.split(".")[0].split("/")[-1]94            test_list_images.append(i)95        if len(content)!=0 and len(content) is not None: 96            for i in content:97                i = i.split(".")[0].split("/")[-1]98                test_list_content.append(i)99        else:100            print("No predictions")101        for i in segment:102            i = i.split(".")[0].split("/")[-1]103            test_list_segment.append(i)104        105        106        107        common_list = list(set(test_list_content) & (set(test_list_images)))108                # common_list_2 = list(set(test_list_content) & (set(test_list_segment)))109        110        print("common list")111        print(len(common_list))112        dir_name_img = os.getcwd() + "/" + "Images"113        dir_name_cont = os.getcwd() + "/" + "Predictions_CRNN"114        dir_name_seg = os.getcwd() + "/" + "Segmentations"115        116        for i in test_list_images:117            if i not in common_list:118                test_list_images.remove(i)119        for i in test_list_content:120            if i not in common_list:121                test_list_content.remove(i)122        for i in test_list_segment:123            if i not in common_list:124                test_list_segment.remove(i)125                                            126        test1=[]127        test2=[]128        test3=[]129        for i in test_list_images:130            i = i + "." + "png" 131            test1.append(i)132        for i in test_list_content:133            i = i + "." + "png.txt"134            test2.append(i)135        for i in test_list_segment:136            i = i + "." + "png.lines.txt"137            test3.append(i)138        for i in images : 139            if i.split("/")[-1] not in test1:140                images.remove(i)141                os.remove(os.path.join(dir_name_img,i.split("/")[-1]))142        for i in content : 143            if i.split("/")[-1] not in test2:144                content.remove(i)145                os.remove(os.path.join(dir_name_cont, i.split("/")[-1]))146        for i in segment: 147            if i.split("/")[-1] not in test3:148                segment.remove(i)149                os.remove(os.path.join(dir_name_seg, i.split("/")[-1]))150        print(len(images))151        print(len(content))152        print(len(segment))153        print(count)154        count+=1155        assert len(content) == len(images)156        #print(len(content[0].split('_')))157        if len(content[0].split('_')) > 2:158            content = ['_'.join(i.split('_')[1:]) for i in content]159            #print(content)160        root = et.parse('./META.XML').getroot()161        print(root)162        meta = {i.tag:i.text for i in root}163        164        if "title" not in meta.keys():165            meta["title"] = None166        167        if "totalpages" not in meta.keys():168            meta["totalpages"] = None169        if meta["title"] is None:170            meta["title"] = "NDLI_"+book_name_lan+str(count)171            count+=1172        #print(count)173        meta["title"] = meta["title"].lower()174        meta["title"] = meta["title"].title()175        if str(meta["title"]) in test_list :176            print("Already Present")177        else:178            if "creator" not in meta.keys():179                meta["creator"] = None180           181            if "digitalrepublisher" not in meta.keys():182                meta["digitalrepublisher"]= None183            if 'creator1' not in meta.keys() or meta["creator1"] is None:184                meta["creator1"] = "Anonymous"185            if meta["creator"] is None:186                meta["creator"]= meta["creator1"]187                188            if meta["digitalrepublisher"] is None:189                meta["digitalrepublisher"] = "Digital Library Of India"190            191            if "subject" not in meta.keys():192                meta["subject"] = "Unavailable"193            194            if meta["digitalrepublisher"] == "PAR Informatics, Hyderabad" or meta["digitalrepublisher"]=="UDL T.T.D, TIRUPATHI"  or meta["digitalrepublisher"]=="UDL TTD TIRUPATHI" or meta["digitalrepublisher"]=="PAR INFORMATICS,HYDERBAD" or meta["digitalrepublisher"]=="UDL T.T.D.Tirupati" or meta["digitalrepublisher"]=="UDL , T.T.D. TIRUPATI" or meta["digitalrepublisher"]=="UDL TTD TIRUPATI" or meta["digitalrepublisher"]=="PAR INFORMATICS,HYD" or meta["digitalrepublisher"]=="<>" or meta['digitalrepublisher']=="Sarvesh Mishra" or meta["digitalrepublisher"]=="UDL TTD TIRUPATI" or meta["digitalrepublisher"]=="Udl Ttd Tirupathi":195                meta["digitalrepublisher"] = "Others"196            if meta["subject"] is None or meta["subject"]=="<>" or meta['subject'] == "<>" or meta["subject"]=="-" or meta["subject"]=="<enter subject of the book>" or meta["subject"]=="<enter subject of the book>":197                meta["subject"] = "Unavailable"198            if meta["subject"]=="RELIGION" or meta['subject']=="Religion" or meta['subject']=="HINDUISM " or meta["subject"]=="hinduism" or meta["subject"]=="HINDUISM" or meta["subject"]=="RELIGION. THEOLOGY" or meta["subject"]=="Religion. Theology":199                meta["subject"] = "Religion and Theology"200            if meta["subject"]=="Literature" or meta["subject"]=="Litrature" or meta["subject"]=="Nobel" or meta["subject"]=="Novel" or meta["subject"] == "Hindi literature" or meta["subject"]=="Hindi Literature" or meta["subject"]=="LITERATURE" or meta["subject"]=="Hindi Literature" or meta["subject"]=="Literature " or meta["subject"]=="Language" or meta["subject"]=="Drama" or meta["subject"]=='drama'  or meta["subject"]=="Hindi drama" or meta["subject"]=="Hindi Drama" or meta["subject"]=="poetry" or meta["subject"]=="lictraturl" or meta["subject"]=="Story" or meta["subject"]=="literature" or meta['subject']=="poetry" or meta["subject"]=="Hindi poetry" or meta["subject"]=="Poetry":201                meta["subject"] = "Language. Linguistics. Literature"202            if meta["subject"]=="Others " or meta["subject"]=="OTHERS":203                meta["subject"]="Digital Library Of India"204            if meta["barcode"] is None:205                meta["barcode"] = "Unavailable"206            207            if meta["totalpages"] is None:208                meta["totalpages"] = "-"209            b = Book(210                isbn= meta['barcode'],211                title=meta['title'].lower().rstrip().title(),212                author=meta['creator'].lower().rstrip().title(),213                language=meta['language'].lower().rstrip().title(),214                genre=meta['subject'].lower().rstrip().title(),215                source=meta['digitalrepublisher'].lower().rstrip().title(),216                numpages = meta["totalpages"]217            )218            shutil.make_archive('Images','zip','.',base_dir='Images')219            shutil.make_archive('Predictions_CRNN','zip','.',base_dir='Predictions_CRNN')220            shutil.make_archive('Segmentations','zip','.',base_dir='Segmentations')221            image_zip = os.path.abspath('Images.zip')222            content_zip= os.path.abspath('Predictions_CRNN.zip')223            segment_zip= os.path.abspath('Segmentations.zip')224            os.chdir(cwd)225            b.book_pdf.save('Images.zip',File(open(image_zip,'rb')), save=False)226            b.book_content.save('Predictions_CRNN.zip', File(open(content_zip,'rb')),save=False)227            b.book_segment.save('Segmentations.zip', File(open(segment_zip,'rb')),save=False)228            os.remove(image_zip)229            os.remove(content_zip)230            os.remove(segment_zip)231            b.save()232            print(meta)233            print(os.getcwd())...test.py
Source:test.py  
...11run = 'test_api'12host = 'http://121.199.9.187:8085'13class TestCase(unittest.TestCase):14    @unittest.skipUnless(run == 'test_list_images', 'reason')15    def test_list_images(self):16        p = processor.AliyunImageServiceProcessor("")17        r = p.queryImages(None, None, None, None, None, None, None, None, None, None, None, None, None,)18        print('test_list_images', r, len(r))19    @unittest.skipUnless(run == 'test_create_image', 'reason')20    def test_create_image(self):21        p = processor.AliyunImageServiceProcessor("")22        r = p.createImage(None, None, 'NewImage', 's-62ev59pgw')23        print('test_create_image', r)24    @unittest.skipUnless(run == 'test_query_image_by_id', 'reason')25    def test_query_image_by_id(self):26        p = processor.AliyunImageServiceProcessor("")27        r = p.queryImageId('coreos681_64_20G_aliaegis_20150618.vhd')28        print('test_query_image_by_id', r)29    @unittest.skipUnless(run == 'test_delete_image_by_id', 'reason')...main.py
Source:main.py  
1from model import Model2from layers.activation import Activation3from layers.max_pooling import MaxPooling4from layers.convolution_layer import ConvolutionLayer5from layers.dense_layer import DenseLayer6from layers.flatten_layer import FlattenLayer7from sklearn.model_selection import train_test_split8import os9os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 10import tensorflow as tf11import numpy as np12from tensorflow import keras13from tensorflow.keras import preprocessing14from tensorflow.keras.preprocessing import image_dataset_from_directory15from tensorflow.keras.preprocessing.image import img_to_array16import pickle17train_ds = image_dataset_from_directory(18        directory='train/',19        labels='inferred',20        label_mode='int',21        batch_size=40,22        shuffle=False,23        image_size=(100, 100))24test = image_dataset_from_directory(25        directory='test/',26        labels='inferred',27        label_mode='int',28        batch_size=40,29        shuffle=False,30        image_size=(100, 100))31train_list_images = []32train_list_labels=[]33for images, labels in train_ds.take(1):34    # print(labels[0].numpy())        35    for i in range(len(images)):36        train_list_images.append(images[i].numpy()*(1/255))37        train_list_labels.append(labels[i].numpy())38test_list_images = []39test_list_labels=[]40for images, labels in test.take(1):41    # print(labels[0].numpy())        42    for i in range(len(images)):43        test_list_images.append(images[i].numpy()*(1/255))44        test_list_labels.append(labels[i].numpy())45model = Model()46model.add(ConvolutionLayer(inputs_size=(100,100,3), padding=0, n_filter=2, filter_size=(3,3), n_stride=1))47model.add(Activation())48model.add(MaxPooling((2,2), 2))49model.add(FlattenLayer())50model.add(DenseLayer(units=8, activation='relu'))51model.add(DenseLayer(units=1, activation='sigmoid'))52# for image in list_images:53#     prediction = model.forward(image)54#     print("prediction : " + str(prediction))55# prediction = model.forward(list_images[0])56from sklearn.metrics import accuracy_score57# split traing 90%58X_train, X_test, y_train, y_test = train_test_split(train_list_images, train_list_labels, test_size=0.1)59model.fit(X_train,y_train,2,3,0.1,0.1)60y_predict = np.zeros(len(y_test))61for i, image in enumerate(X_test):62    predict = model.forward(image)63    if (predict[0] > 0.5):64        y_predict[i] = 165    else:66        y_predict[i] = 067accuracy = accuracy_score(y_test,y_predict)68print(accuracy)69# save the model to disk70filename = 'finalized_model.sav'71pickle.dump(model, open(filename, 'wb'))72 73# load the model from disk74loaded_model = pickle.load(open(filename, 'rb'))75y_predict = np.zeros(len(y_test))76for i, image in enumerate(X_test):77    predict = loaded_model.forward(image)78    if (predict[0] > 0.5):79        y_predict[i] = 180    else:81        y_predict[i] = 082accuracy = accuracy_score(y_test,y_predict)83print(accuracy)84# using data test85y_predict = np.zeros(len(test_list_images))86for i, image in enumerate(test_list_images):87    predict = loaded_model.forward(image)88    if (predict[0] > 0.5):89        y_predict[i] = 190    else:91        y_predict[i] = 092accuracy = accuracy_score(test_list_labels,y_predict)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
