Best Python code snippet using fMBT_python
results.py
Source:results.py  
...10                  'K1': s*s/fact(5)/fact(4),11                  'K2': t*t/fact(5)/fact(4),12                  'K3': s*(3*s*s-2*s*t+t*t)/fact(5)/fact(4)/fact(3)/9,13                  'K4': t*(3*t*t-2*s*t+s*s)/fact(5)/fact(4)/fact(3)/9,14                 'L1': (s**3*cln(-210))/fact(6)/fact(5)/fact(4)/fact(3),15                 'L2': (t**3*cln(-210))/fact(6)/fact(5)/fact(4)/fact(3),16                 'L3': (s**4*cln(-430)/21+s**3*t*cln(4)/9-s**2*t**2*cln(1)/18)/fact(6)/fact(5)/fact(4)/fact(3), #correct17                 'L4': (-s**2*t**2*cln(1)/18+s*t**3*cln(4)/9+t**4*cln(-430)/21)/fact(6)/fact(5)/fact(4)/fact(3),18                 'L5': (s**4*cln(-20)/3+s**3*t*cln(8)/9-s**2*t**2*cln(1)/9)/fact(6)/fact(5)/fact(4)/fact(3), #correct19                 'L6': (-s**2*t**2*cln(1)/9+s*t**3*cln(8)/9)/fact(6)/fact(5)/fact(4)/fact(3),20                 'L7': (-cln(45)/14*s**5+s**4*t*(cln(18)/7)+s**3*t**2*cln(-27)/14+s*s*t**3*(cln(9)/7)+s*t**4*cln(-9)/14)/fact(6)/fact(5)/fact(4)/fact(3),21                 'L8': (s*t**4*(cln(18)/7)+s**2*t**3*cln(-27)/14+s**3*t**2*(cln(9)/7)+t*s**4*cln(-9)/14-cln(45)/14*t**5)/fact(6)/fact(5)/fact(4)/fact(3), #corect22                 'L9': (s**5*cln(-15)/28+s**4*t*cln(25)/7/9+s**3*t**2*cln(-65)/7/4/9+s**2*t**3*cln(5)/42+s*t**4*(-cln(1)/28))/fact(6)/fact(5)/fact(4)/fact(3), #correct23                 'L10': (s**4*t*(-cln(1)/28)+s**3*t**2*cln(5)/42 + s**2*t**3*cln(-65)/7/4/9+t**4*s*cln(25)/7/9+t**5*cln(-15)/28)/fact(6)/fact(5)/fact(4)/fact(3),24                 'L11': cln(0),25                 'L12': cln(0),26                 'L13': cln(0),27                 'L14': cln(0),28                 'L15': cln(0),29                  }30print res_d8_kazakov31#D8_s_s_s_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t_0_V7_E-2.run.res.1M:result = 0.00034717706155927514732#D8_s_s_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t_0_V7_E-2.run.res.1M:result = -7.71577109669606447e-0533#D8_1|234||||:0|0_0_0||||:s|0|s|t|t/1|234||||:0|0_0_0||||:s|0|s|t|t_0_V3_E0.run.res.1M:result = 0.16666638078993067934#D8_s_1|234|3|45|||:0|0_0_0|0|0_0|||:s|0|t|0|t|s/1|234|3|45|||:0|0_0_0|0|0_0|||:s|0|t|0|t|s_0_V5_E-1.run.res.1M:result = -0.013886323804284202535#D8_s_s_1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s/1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s_0_V7_E-2.run.res.1M:result = 0.0020336130469667495936#D8_s_t_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t_0_V7_E-2.run.res.1M:result = 3.85783339864735573e-0537#D8_s_t_1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s/1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s_0_V7_E-2.run.res.1M:result = 1.15723241185716754e-0638# D8_1|234||||:0|0_0_0||||:s|0|s|t|t/1|234||||:0|0_0_0||||:s|0|s|t|t_0_V3_E0.run.res.10000000:result = 0.16666680164104566439# D8_1|234||||:0|0_0_0||||:s|0|s|t|t/1|234||||:0|0_0_0||||:s|0|s|t|t_0_V3_E0.run.res.100000000:result = 0.16666673725766045840# D8_s_1|234|3|45|||:0|0_0_0|0|0_0|||:s|0|t|0|t|s/1|234|3|45|||:0|0_0_0|0|0_0|||:s|0|t|0|t|s_0_V5_E-1.run.res.100000000:result = -0.006944439500525969841# D8_s_s_1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s/1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s_0_V7_E-2.run.res.100000000:result = 0.00034722242744591606942# D8_s_s_s_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t_0_V7_E-2.run.res.100000000:result = 1.92902197684449618e-0543# D8_s_s_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t_0_V7_E-2.run.res.100000000:result = -1.28600777698412859e-0544# D8_s_s_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s_0_V7_E-2.run.res.100000000:result = 6.43009917744553122e-0645# D8_s_t_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t_0_V7_E-2.run.res.100000000:result = 6.4300638832171996e-0646# D8_s_t_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s_0_V7_E-2.run.res.100000000:result = -1.28601020109254184e-0547# D8_t_1|234|3|45|||:0|0_0_0|0|0_0|||:t|0|s|0|s|t/1|234|3|45|||:0|0_0_0|0|0_0|||:t|0|s|0|s|t_0_V5_E-1.run.res.100000000:result = -0.0069444411682917294948# D8_t_t_1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:t|0|0|s|s|0|t/1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:t|0|0|s|s|0|t_0_V7_E-2.run.res.100000000:result = 0.00034722050463016244449# D8_t_t_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s/1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s_0_V7_E-2.run.res.100000000:result = 1.92901204043652127e-0550res_d8_mk =  {'I1': 0.166666380789930679,  # D8_1|234||||:0|0_0_0||||:s|0|s|t|t51              'J1': -0.0069444395005259698*s + 0*t,  # D8_s_1|234|3|45|||:0|0_0_0|0|0_0|||:s|0|t|0|t|s52              'J2': -0.00694444116829172949*t + 0*s,  # D8_t_1|234|3|45|||:0|0_0_0|0|0_0|||:t|0|s|0|s|t53              'K1': s**2*0.000347222427445916069,   # D8_s_t_1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:s|0|0|t|t|0|s54              'K2': t**2*0.000347220504630162444,  # D8_s_t_1|234|345|5|5|6||:0|0_0_0|0_0_0|0|0|0||:t|0|0|s|s|0|t55              'K3': s**3*1.92902197684449618e-05+s**2*t*(-1.28600777698412859e-05)+s*t**2*6.4300638832171996e-06+t**3*0,   # D8_s_s_s_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:s|0|t|0|s|0|t56              'K4': s**3*0+s**2*t*(6.43009917744553122e-06)+s*t**2*(-1.28601020109254184e-05)+t**3*1.92901204043652127e-05,   # D8_t_t_t_1|23456|3|45|5|6||:0|0_0_1_0_0|0|0_0|0|0||:t|0|s|0|t|0|s57              'L1': s**3*(-1.68785995602744613e-05),58              'L2': t**3*(-1.68778695435609865e-05),59              'L3': s**4*(-1.64567102125066986e-06)+s**3*t*(3.57204561294340108e-08)+s*s*t*t*(-4.46518959518477966e-09), #correct s*s*t*t60              'L4': s*s*t*t*(-4.46518959518477966e-09)+s*t**3*(3.57204561294340108e-08)+t**4*(-1.64567102125066986e-06),61              'L5': s**4*(-2.75253142702371203e-07 -1.42726868721902996e-07 -3.44893147619749901e-08-8.33243335550604943e-08)+s**3*t*(7.14458251862796748e-08)+s*s*t*t*(-8.93056087494089887e-09), #correct s*s*t*t62              'L6': s*s*t*t*(-8.93056087494089887e-09)+s*t**3*(7.14458251862796748e-08)+t**4*(-2.75253142702371203e-07 -1.42726868721902996e-07 -3.44893147619749901e-08-8.33243335550604943e-08),63              'L7': s**5*(-2.58350887957834037e-07)+s**4*t*(2.06686192690137045e-07)+s**3*t**2*(-1.55011566907761635e-07)+s**2*t**3*(1.03337882470582075e-07)+s*t**4*(-5.16715122528733594e-08),64              'L8': s**4*t*(-5.16715122528733594e-08)+s**3*t**2*(1.03337882470582075e-07)+s**2*t**3*(-1.55011566907761635e-07)+s**1*t**4*(2.06686192690137045e-07)+t**5*(-2.58350887957834037e-07),  #correct t^565              'L9': s*t**4*(-2.87039517787842645e-09)+s**2*t**3*(9.56890571755092227e-09)+s**3*t**2*(-2.07308801741647146e-08)+s**4*t*(2.55016905933046112e-08+4.50545680076137807e-09+1.88880929057826021e-09)+s**5*(-2.60895992478026868e-08-7.03329483134756389e-10-1.62670686265519564e-08), #correct s*s*t*t66              'L10': s**4*t*(-2.87039517787842645e-09)+s**3*t**2*(9.56890571755092227e-09)+s**2*t**3*(-2.07308801741647146e-08)+t**4*s*(2.55016905933046112e-08+4.50545680076137807e-09+1.88880929057826021e-09)+t**5*(-2.60895992478026868e-08-7.03329483134756389e-10-1.62670686265519564e-08),67              'L11': cln(0),68              'L12': cln(0),69              'L13': cln(0),70              'L14': cln(0),71              'L15': cln(0),72              }73for i in sorted(res_d8_mk.keys()):74    print i, "\t", (res_d8_kazakov[i].expand()).evalf() if i in res_d8_kazakov else None, "\n\t", res_d8_mk[i], \75        "\ndelta =", ((res_d8_kazakov[i].expand()).evalf()-res_d8_mk[i]).expand() if i in res_d8_kazakov else None76    print i, "\t", (res_d8_kazakov[i])*fact(6)*fact(5)*fact(4)*fact(3)77    print78sys.exit()79print80print81print "D=6"82print83res_d6_kazakov = {'K3': cln(1)/6,84                 'K4': cln(1)/6,85                 'L1': cln(0),86                 'L2': cln(0),87                 'L3': cln(1)/48,88                 'L4': cln(1)/48,89                 'L5': cln(1)/24,90                 'L6': cln(1)/24,91                 'L7': cln(0),92                 'L8': cln(0),93                 'L9': (t-s)/3/48,94                 'L10': (s-t)/3/48,95                 'L11': cln(0),96                 'L12': cln(0),97                 'L13': cln(0),98                 'L14': cln(0),99                 'L15': cln(0),100                 }101# D6_1|234|34567|5|6|67|7||:0|0_0_0|0_0_0_0_1|0|0|0_0|0||:s|0|0|t|t|0|0|s/1|234|34567|5|6|67|7||:0|0_0_0|0_0_0_0_1|0|0|0_0|0||:s|0|0|t|t|0|0|s_0_V11_E-1.run.res.10000000:result = 0.0208328082549803541102# D6_1|23456|34|45|567|6|||:0|0_0_1_0_0|0_0|0_0|0_0_0|0|||:t|0|s|0|0|0|s|t/1|23456|34|45|567|6|||:0|0_0_1_0_0|0_0|0_0|0_0_0|0|||:t|0|s|0|0|0|s|t_0_V11_E-1.run.res.10000000:result = 0.0416652289605569243103# D6_s_1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:s|0|t|0|0|t|s|0/1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:s|0|t|0|0|t|s|0_0_V11_E-1.run.res.10000000:result = -0.00694435447490225188104# D6_s_1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:t|0|s|0|0|s|t|0/1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:t|0|s|0|0|s|t|0_0_V11_E-1.run.res.10000000:result = 0.00694435967527374902105# D6_t_1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:s|0|t|0|0|t|s|0/1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:s|0|t|0|0|t|s|0_0_V11_E-1.run.res.10000000:result = 0.00694430532353083625106# D6_t_1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:t|0|s|0|0|s|t|0/1|23456|3|4567|57|7|7||:0|0_0_0_0_1|0|0_1_0_0|0_0|0|0||:t|0|s|0|0|s|t|0_0_V11_E-1.run.res.10000000:result = -0.00694409525342296833107res_d6_mk = {'K3': 0.166672811495946843,108                 'K4': 0.166630234959756984,109                 'L1': cln(0),110                 'L2': cln(0),111                 'L3': 0.0208328082549803541,112                 'L4': cln(1)/48,113                 'L5':  0.0416652289605569243,114                 'L6': cln(1)/24,115                 'L7': 0.,116                 'L8': 0.,117                 'L9': -0.00694435447490225188*s+0.006944359675273749026*t,118                 'L10': 0.00694430532353083625*s+(-0.00694409525342296833)*t,119                 'L11': cln(0),120                 'L12': cln(0),121                 'L13': cln(0),122                 'L14': cln(0),123                 'L15': cln(0),124                 }125for i in sorted(res_d6_kazakov.keys()):126    print i,"\t", (res_d6_kazakov[i].expand()).evalf(),"\n\t",res_d6_mk[i],"\ndelta =", ((res_d6_kazakov[i].expand()).evalf()-res_d6_mk[i]).expand()...refined_md.py
Source:refined_md.py  
1from utility import *2import matplotlib.pyplot as plt3from numpy import linspace4from scipy.integrate import odeint5class Model():6    def __init__(7            self, init_paras, max_t, max_ite, title8    ):9        self.init_paras = init_paras10        self.max_t = max_t11        self.max_ite = max_ite12        self.title = title13        # initial species counts and sojourn times14        self.initital_conditions = {15            "p_s": [self.init_paras['p_s']],16            "p_cln": [self.init_paras['p_cln']],17            "h_s": [self.init_paras['h_s']],18            "h_cln": [self.init_paras['h_cln']],19            "nur_s": [self.init_paras['nur_s']],20            "nur_cln": [self.init_paras['nur_cln']],21            "time": [0.0],22        }23        # propensity functions24        self.propensities = {25            # patient gets colonized through contacts from HCWs26            0: lambda d: self.init_paras['r_hcw_p'] * d["p_s"][-1] * d["h_cln"][-1] / self.init_paras['N_h'],27            # patient gets colonized through contacts from nurses28            1: lambda d: self.init_paras['r_nur_p'] * d["p_s"][-1] * d["nur_cln"][-1] / self.init_paras['N_nur'],29            # HCW gets colonized30            2: lambda d: self.init_paras['r_p_hcw']* d["h_s"][-1] * d["p_cln"][-1] / self.init_paras['N_h'],31            # colonized HCW washes hands to eliminate pathogen32            3: lambda d: self.init_paras['r_hw_hcw'] * d["h_cln"][-1],33            # Nurse gets colonized34            4: lambda d: self.init_paras['r_p_nur']* d["nur_s"][-1] * d["p_cln"][-1] / self.init_paras['N_nur'],35            # colonized Nurse washes hands to eliminate pathogen36            5: lambda d: self.init_paras['r_hw_nur'] * d["nur_cln"][-1],37            # colonized patient is detected38            6: lambda d: self.init_paras['r_det'] * d["p_cln"][-1],39            # patient is regularly removed from the ward40            7: lambda d: self.init_paras['r_rm'] * d["p_cln"][-1],41            # Proportion of admissions already colonized42            8: lambda d: self.init_paras['pro_cln'] * (self.init_paras['r_rm'] * (d["p_s"][-1] + d["p_cln"][-1] +43                        self.init_paras['r_det'] * d["p_cln"][-1]) + self.init_paras['r_det'] * d["p_cln"][-1]),44        }45        # change in species for each propensity46        self.stoichiometry = {47            0: {"p_s": -1, "p_cln": 1,  "h_s": 0,  "h_cln": 0,  "nur_s":0,  "nur_cln":0 },48            1: {"p_s": -1, "p_cln": 1,  "h_s": 0,  "h_cln": 0,  "nur_s":0,  "nur_cln":0 },49            2: {"p_s": 0,  "p_cln": 0,  "h_s": -1, "h_cln": 1,  "nur_s":0,  "nur_cln":0 },50            3: {"p_s": 0,  "p_cln": 0,  "h_s": 1,  "h_cln": -1, "nur_s":0,  "nur_cln":0 },51            4: {"p_s": 0,  "p_cln": 0,  "h_s": 0,  "h_cln": 0,  "nur_s":-1, "nur_cln":1 },52            5: {"p_s": 0,  "p_cln": 0,  "h_s": 0,  "h_cln": 0,  "nur_s":1,  "nur_cln":-1},53            6: {"p_s": 1,  "p_cln": -1, "h_s": 0,  "h_cln": 0,  "nur_s":0,  "nur_cln":0 },54            7: {"p_s": 1,  "p_cln": -1, "h_s": 0,  "h_cln": 0,  "nur_s":0,  "nur_cln":0 },55            8: {"p_s": -1, "p_cln": 1,  "h_s": 0,  "h_cln": 0,  "nur_s":0,  "nur_cln":0 }56        }57    def __call__(self, plot = True,save = True):58        plt.figure(figsize=(10,10), dpi=500)59        fig = plt.gcf()60        fig.suptitle(self.title, fontsize=16)61        axes_p_cln = plt.subplot(311)62        axes_p_cln.set_ylabel("number of infected patients")63        axes_p_cln.set_xlabel('$t$')64        axes_p_cln.set_xlim([0, self.max_t])65        axes_p_cln.set_ylim([0, self.init_paras['N_p']])66        axes_hcw_cln = plt.subplot(312)67        axes_hcw_cln.set_ylabel("number of colonized HCWs")68        axes_hcw_cln.set_xlabel('$t$')69        axes_hcw_cln.set_xlim([0, self.max_t])70        axes_hcw_cln.set_ylim([0, self.init_paras['N_h']])71        axes_nur_cln = plt.subplot(313)72        axes_nur_cln.set_ylabel("number of colonized nurses")73        axes_nur_cln.set_xlabel('$t$')74        axes_nur_cln.set_xlim([0, self.max_t])75        axes_nur_cln.set_ylim([0, self.init_paras['N_nur']])76        # instantiate the epidemic SSA model container77        epidemic = SSAModel(78            self.initital_conditions,79            self.propensities,80            self.stoichiometry81        )82        # instantiate the SSA container with model83        epidemic_generator = SSA(epidemic, self.max_t)84        # simulate and plot 30 trajectories85        trajectories = 086        for trajectory in epidemic_generator.direct():87            axes_p_cln.step(trajectory["time"], trajectory["p_cln"], color="orange")88            axes_hcw_cln.step(trajectory["time"], trajectory["h_cln"], color="orange")89            axes_nur_cln.step(trajectory["time"], trajectory["nur_cln"], color="orange")90            trajectories += 191            if trajectories == self.max_ite:92                break93        # numerical solution using an ordinary differential equation solversir94        t = linspace(0, self.max_t, num=self.max_t*10)95        y0 = (self.init_paras['p_s'], self.init_paras['p_cln'],96              self.init_paras['h_s'], self.init_paras['h_cln'],97              self.init_paras['nur_s'], self.init_paras['nur_cln'])98        solution = odeint(self.differential_SIR, y0, t,99                          args=(self.init_paras['r_hcw_p'], self.init_paras['r_p_hcw'],100                                self.init_paras['r_hw_hcw'],101                                self.init_paras['r_nur_p'], self.init_paras['r_p_nur'],102                                self.init_paras['r_hw_nur'],103                                self.init_paras['r_det'],104                                self.init_paras['r_rm'], self.init_paras['pro_cln']))105        solution = [[row[i] for row in solution] for i in range(6)]106        # plot numerical solution107        axes_p_cln.plot(t, solution[1], color="black")108        axes_hcw_cln.plot(t, solution[3], color="black")109        axes_nur_cln.plot(t, solution[5], color="black")110        fig = plt.gcf()111        if plot:112            plt.show()113        if save:114            fig.savefig(self.title+'.png', dpi=800)115    def differential_SIR(self, n, t,  r_hcw_p, r_p_hcw, r_hw_hcw,  r_nur_p, r_p_nur, r_hw_nur, r_det, r_rm, pro_cln):116        dps_dt = -pro_cln * (r_rm * (n[0] + n[1]) + r_det * n[1]) \117                 - r_nur_p * n[0] * n[5] / self.init_paras['N_nur'] \118                 - r_hcw_p * n[0] * n[3] / self.init_paras['N_h'] + (r_det+r_rm) * n[1]119        dpc_dt = pro_cln * (r_rm * (n[0] + n[1]) + r_det * n[1]) \120                 + r_nur_p * n[0] * n[5] / self.init_paras['N_nur'] \121                 + r_hcw_p * n[0] * n[3] / self.init_paras['N_h'] - (r_det+r_rm) * n[1]122        dhs_dt = -r_p_hcw * n[2] * n[1] / self.init_paras['N_h'] + r_hw_hcw * n[3]123        dhc_dt = r_p_hcw * n[2] * n[1] / self.init_paras['N_h'] - r_hw_hcw * n[3]124        dnurs_dt = -r_p_nur * n[4] * n[1] / self.init_paras['N_nur'] + r_hw_nur * n[5]125        dnurc_dt = r_p_nur * n[4] * n[1] / self.init_paras['N_nur'] - r_hw_nur * n[5]...hardcoded.py
Source:hardcoded.py  
...4import graph_util_ms5import graph_state6import graphine7from rggraphenv.symbolic_functions import cln, log, p8ln43 = log(cln(4)/cln(3))9ONE_LOOP = dict()10from rggraphenv import symbolic_functions11ONE_LOOP[graph_util_ms.from_str("e11|e|:00_aA_aA|00|::::").to_graph_state()] = {"iw": {-1: cln(1)/cln(4)}, "p2": {-1: -cln(1)/cln(8)}, "tau": {-1: -cln(1)/cln(2)}}12ONE_LOOP[graph_util_ms.from_str("e12|e2|e|:00_Aa_aA|00_aA|00|::::").to_graph_state()] = {"log": {-1: cln(1)/cln(4)}}13assert len(ONE_LOOP) == 214TWO_LOOPS = dict()15# TWO_LOOPS[graph_util_ms.from_str("e12|e3|e4|44||:00_Aa_aA|00_aA|00_Aa|aA_aA||::::").to_graph_state()] = {"log": {-2: cln(1)/cln(64), -1: -cln(3)/cln(32)-ln43/cln(64)}}16# TWO_LOOPS[graph_util_ms.from_str("e12|e3|e4|44||:00_aA_aA|00_Aa|00_aA|Aa_Aa||::::").to_graph_state()] = {"log": {-2: cln(3)/cln(128), -1: -cln(3)*ln43/cln(128)-cln(1)/cln(32)}}17# TWO_LOOPS[graph_util_ms.from_str("e12|e3|e4|44||:00_Aa_Aa|00_Aa|00_aA|Aa_Aa||::::").to_graph_state()] = {"log": {-2: cln(3)/cln(128), -1: -cln(3)*ln43/cln(128)-cln(1)/cln(32)}}18TWO_LOOPS[graph_util_ms.from_str("e12|e3|e4|44||:00_Aa_aA|00_aA|00_Aa|aA_aA||::::").to_graph_state()] = {"log": {-2: cln(1)/cln(64), -1: -cln(1)/cln(32)-ln43/cln(64)}}19TWO_LOOPS[graph_util_ms.from_str("e12|e3|e4|44||:00_aA_aA|00_Aa|00_aA|Aa_Aa||::::").to_graph_state()] = {"log": {-2: cln(3)/cln(128), -1: -cln(3)*ln43/cln(128)}}20TWO_LOOPS[graph_util_ms.from_str("e12|e3|e4|44||:00_Aa_Aa|00_Aa|00_aA|Aa_Aa||::::").to_graph_state()] = {"log": {-2: cln(3)/cln(128), -1: -cln(3)*ln43/cln(128)}}21TWO_LOOPS[graph_util_ms.from_str("e12|34|34|e|e|:00_aA_aA|aA_aA|aA_aA|00|00|::::").to_graph_state()] = {"log": {-1: ln43*cln(3)/cln(8)}}22# delete23# TWO_LOOPS[graph_util_ms.from_str("e12|34|34|e|e|:00_Aa_Aa|Aa_Aa|Aa_Aa|00|00|::::").to_graph_state()] = {"log": {-1: ln43*cln(3)/cln(8)}}24TWO_LOOPS[graph_util_ms.from_str("e12|34|34|e|e|:00_aA_aA|aA_aA|Aa_aA|00|00|::::").to_graph_state()] = {"log": {-1: ln43/cln(8)}}25TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_aA_aA|00_aA|aA_aA|aA|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (cln(1)+ln43)/cln(32)}}26TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_Aa_Aa|00_Aa|Aa_Aa|Aa|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (cln(1)+ln43)/cln(32)}}27TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_aA_aA|00_aA|Aa_aA|aA|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (cln(1)-3*ln43)/cln(32)}}28TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_Aa_Aa|00_Aa|aA_Aa|Aa|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (cln(1)-3*ln43)/cln(32)}}29# delete30# TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_aA_aA|00_Aa|aA_aA|Aa|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (ln43-cln(1))/cln(32)}}31TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_Aa_Aa|00_aA|Aa_Aa|aA|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (ln43-cln(1))/cln(32)}}32# delete33# TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_aA_aA|00_Aa|aA_aA|aA|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (cln(1)-3*ln43)/cln(32)}}34TWO_LOOPS[graph_util_ms.from_str("e12|e3|34|4|e|:00_Aa_Aa|00_aA|Aa_Aa|Aa|00|::::").to_graph_state()] = {"log": {-2: -cln(1)/cln(32), -1: (cln(1)-3*ln43)/cln(32)}}35# assert len(TWO_LOOPS) == 936# TWO_LOOPS[graph_util_ms.from_str("e12|23|3|e|:00_aA_aA|aA_aA|aA|00|::::").to_graph_state()] = {"iw": {-2: -cln(1)/cln(16), -1: (cln(1)-ln43)/cln(16)},37#                                                                                                "p2": {-2: cln(1)/cln(32), -1: -cln(7)/cln(192)+ln43/cln(16)},38#                                                                                                "tau": {-1: cln(1)/cln(8), -2: cln(1)/cln(8)}}39TWO_LOOPS[graph_util_ms.from_str("e12|23|3|e|:00_aA_aA|aA_aA|aA|00|::::").to_graph_state()] = {"iw": {-2: -cln(1)/cln(16), -1: (cln(1)-ln43)/cln(16)},40                                                                                               "p2": {-2: cln(1)/cln(32), -1: -cln(7)/cln(192)+ln43/cln(16)},41                                                                                               "tau": {-1: -cln(1)/cln(8), -2: cln(1)/cln(8)}}42# TWO_LOOPS[graph_util_ms.from_str("e12|e3|33||:00_aA_aA|00_Aa|aA_aA||::::").to_graph_state()] = {"iw": {-2: cln(1)/cln(64), -1: -cln(3)/cln(32)-ln43/cln(64)},43#                                                                                               "p2": {-2: -cln(3)/cln(256), -1: cln(3)*ln43/cln(256)+cln(67)/cln(1536)},44#                                                                                               "tau": {-1: -cln(1)/cln(8)}}45TWO_LOOPS[graph_util_ms.from_str("e12|e3|33||:00_aA_aA|00_Aa|aA_aA||::::").to_graph_state()] = {"iw": {-2: cln(1)/cln(64), -1: -cln(1)/cln(32)-ln43/cln(64)},46                                                                                                "p2": {-2: -cln(3)/cln(256), -1: cln(3)*ln43/cln(256)+cln(19)/cln(1536)},47                                                                                                "tau": {-1: cln(3)/cln(32)}}48# # assert len(TWO_LOOPS) == 1149# a = TWO_LOOPS[graph_util_ms.from_str("e12|23|3|e|:00_aA_aA|aA_aA|aA|00|::::").to_graph_state()]["p2"][-1]50# b = TWO_LOOPS[graph_util_ms.from_str("e12|e3|33||:00_aA_aA|00_Aa|aA_aA||::::").to_graph_state()]["p2"][-1]/251# print a+b52# exit(1)53def kr1(graph, operation):54    graph = graphine.Graph(map(lambda e: e.copy(fields=graph_state.Fields("00")) if e.is_external() else e, graph))55    if graph.loops_count == 1:56        return ONE_LOOP[graph.to_graph_state()][operation]57    elif graph.loops_count == 2:58        return TWO_LOOPS[graph.to_graph_state()][operation]59    assert False60def kr1_eps(graph, operation):61    result = symbolic_functions.CLN_ZERO...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
