Best Python code snippet using hypothesis
prediction.py
Source:prediction.py  
1import numpy as np2class Prediction:3    def train(self, method_str, method, state, action, max_episodes, max_steps, file_log, state_kinds=None):4        episode_total_reward = []5        episode_step_reward = []6        episode_mae = []7        action_true = []8        action_predict = []9        for episode in range(max_episodes):10            episode_reward = 011            count_step = 012            index = np.random.choice(range(len(state)))13            s = state[index]14            if method_str == "DF-DQN":15                kind = state_kinds[index]16            for step in range(max_steps):17                count_step += 118                a_true = action[index]19                action_true.append(a_true)20                if method_str == "DQN":21                    a, a_value = method.choose_action(state=s, stage="train")22                    action_predict.append(a_value)23                    r = -abs(a_value - a_true)24                elif method_str == "DF-DQN":25                    a, a_value = method.choose_action(state=s, kind=kind, stage="train")26                    action_predict.append(a_value)27                    r = -abs(a_value - a_true)28                elif method_str == "DDPG":29                    a = method.choose_action(state=s, stage="train")30                    a = np.reshape(a, (1, -1))[0][0]31                    action_predict.append(a)32                    r = -abs(a - a_true)33                episode_step_reward.append(r)34                episode_reward += r35                index += 136                if index == len(state):37                    break38                s_ = state[index]39                if method_str == "DF-DQN":40                    kind = state_kinds[index]41                method.store_transition(s, a, r, s_)42                method.learn(count_step)43                if (index == len(state) - 1) or (step == max_steps - 1):44                    episode_total_reward.append(episode_reward)  # ä¿åæ¯ä¸ªååç累计å¥èµ45                    print('Episode %d : %.2f' % (episode, episode_reward))46                    file_log.write('Episode %d : %.2f\n' % (episode, episode_reward))  # æå°ååæ°åå¥èµç´¯è®¡å¼47                    break48                s = s_49            episode_reward = np.reshape(episode_reward, (1, -1))[0][0]50            episode_mae.append((-episode_reward) / count_step)  # è®¡ç®æ¯ååçmaeï¼çæ¶ææ
åµ51        return method, episode_mae, action_predict, action_true, episode_step_reward  # å°è®ç»å¥½çagentè¿ååºå»52    def prediction(self, method_str, method, state, action, state_kinds=None):53        action_predict = []54        action_true = []55        for i in range(len(state)):56            s = state[i]57            if method_str == "DF-DQN":58                kind = state_kinds[i]59            action_true.append(action[i])60            if method_str == "DQN":61                a, a_value = method.choose_action(state=s, stage="test")62                action_predict.append(a_value)63            elif method_str == "DF-DQN":64                a, a_value = method.choose_action(state=s, kind=kind, stage="test")65                action_predict.append(a_value)66            elif method_str == "DDPG":67                a = method.choose_action(state=s, stage="test")68                a = np.reshape(a, (1, -1))[0][0]69                action_predict.append(a)...pedometer.py
Source:pedometer.py  
...10gz = []  # the gyroscope of z-axis11i_step = []12flag = False1314def  count_step(g_window):15    # applying fft algorithm16    sliding_window = len(g_window)17    T = 0.05   # 50ms18    g_windowf = fft(g_window)19    g_f = 2.0/sliding_window * np.abs(g_windowf[0:sliding_window//2])20    xf = np.linspace(0.0, 1.0/(2.0*T), sliding_window//2)2122    index = np.where(np.logical_and(xf>=0.6, xf<=2))23    index_1 = np.where(np.logical_and(xf>=0, xf<=0.6))24    if index[0].size == 0:25        return 026    else:27        xf_between = xf[index]28        g_windowf_between = g_f[index]29        # g_windowf_between_1 = g_f[index_1]30        if np.mean(g_windowf_between) >= 2.5:31            index_max = np.where(g_windowf_between == max(g_windowf_between))32            count_step = xf_between[index_max[0][0]]*1.233            return count_step34        else:35            return 03637while True:38    cc = str(ser.readline())39    raw_data = cc.split(",")40    if (len(cc)<16) or len(raw_data) != 3:41        continue42    else:43        gz.append(float(raw_data[1]))4445        if len(gz)% 50 == 0:46            flag = True47            i_th_step =  round(count_step(gz))48            i_step.append(i_th_step)49            if i_th_step == 0:50              flag = False51              gz = []52        os.system('cls')53        if flag:54          print("Current Status: Walking")55          print("Step Count:", sum(i_step))56        else:57          print("Current Status: Standing or Typing")
...Fibonacci, Quantas Chamadas - 1029.py
Source:Fibonacci, Quantas Chamadas - 1029.py  
1def fibonacci(n, computed = {0: 0, 1: 1}):2    if n not in computed:3        computed[n] = fibonacci(n-1, computed) + fibonacci(n-2, computed)4    return computed[n]567def count_step_fibonacci(n, count_step = {0: 0, 1: 0, 2: 2}):8    if n not in count_step:9        count_step[n] = count_step_fibonacci(n-1, count_step) + count_step_fibonacci(n-2, count_step) + 210    return count_step[n]111213num = int(input())14inputs = []15for x in range(0, num):16    try:17        read = input()18        if read is '':19            break20        inputs.append(int(read))21    except EOFError:22        break232425for number in inputs:
...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
