Best Python code snippet using hypothesis
prune_by_feature_map.py
Source:prune_by_feature_map.py  
...55        if del_kernels is not None:56            weight = np.delete(weight, del_kernels, axis=1)57        print(weight.shape)58        return weight, bias, del_filters, origin_channels59    def _prune_rude(self, name, conv_param, del_kernels=None, del_filters=None):60        weight, bias = conv_param61        weight = weight.data62        bias = bias.data63        origin_channels = weight.shape[0]64        if name in [self.base_layer,]:         # 以shortcutå±ä¸ºåºç¡æ¥åªæ65            # del_filters = get_del_filter(net, "../models/image/")66            del_filters = np.loadtxt('del_filter.txt', dtype=np.float32)67            kernel_sum = np.sum(np.abs(weight), axis=(1,2,3))68            # print (kernel_sum)69            # del_num = self.ratio70            # kernel_axis = np.argsort(kernel_sum)71            # del_filters = kernel_axis[0:del_num]72            # print(del_filters)73        if del_filters is not None:74            # è£åªééæ°,outputåå°75            weight = np.delete(weight, del_filters, axis=0)76            bias = np.delete(bias, del_filters, axis=0)77        # print('\n')78        # print(name)79        # print(name + " filter nums need to delete is " + str(len(del_filters)))80        # print(name + " filter nums need to preserve is " + str(origin_channels - len(del_filters)))81        if del_kernels is not None:82            # 计ç®åºè¦è£åªçkernel inputåå°83            weight = np.delete(weight, del_kernels, axis=1)84        print("{}å±è£åªåçè¾åºç»´åº¦æ¯{}".format(name,weight.shape))85        return weight, bias, del_filters, origin_channels86    # æ´åè£åª87    def prune_conv_rude(self, name, bottom=None , not_del_filters=False):88        if bottom is None:89            self.conv_data[name] = self._prune_rude(name, self._net.params[name])90        else:91            if not_del_filters is True:  # filtersä¸éè¦è£åª(output), 使¯kernelséè¦è£åª(input)92                self.conv_data[name] = self._prune_rude(name, self._net.params[name],93                                                        del_kernels=self.conv_data[self.base_layer][2],94                                                        del_filters=None)95            else:   # filterséè¦è£åª(output),使¯kernelsä¸éè¦è£åª(input)96                self.conv_data[name] = self._prune_rude(name, self._net.params[name],97                                                        del_kernels=None,98                                                        del_filters=self.conv_data[self.base_layer][2],)99    def fc_prune(self,conv_param, del_kernels):100        bias = conv_param[1]101        bias = bias.data102        f2c = fc2conv(self._net)103        weight = f2c.del_inputs(del_kernels)104        return weight, bias105    def prune_conv(self, name, bottom=None):106        if bottom is None:107            self.conv_data[name] = self._prune(name, self._net.params[name])108        else:109            self.conv_data[name] = self._prune(name, self._net.params[name], del_kernels=self.conv_data[bottom][2])110    def prune_concat(self, name, bottoms=None):111        if bottoms is not None:112            offsets = [0] + [self.conv_data[b][3] for b in bottoms]113            for i in range(1, len(offsets)):114                offsets[i] += offsets[i - 1]115            del_filters = [self.conv_data[b][2] + offsets[i] for i, b in enumerate(bottoms)]116            del_filters_new = np.concatenate(del_filters)117        else:118            del_filters_new = []119        if name[0:2] == 'fc':120            self.conv_data[name] = self.fc_prune(self._net.params[name], del_filters_new)121        else:122            self.conv_data[name] = self._prune_rude(name, self._net.params[name],123                                               del_kernels=del_filters_new, del_filters=None)124    def prune_sum(self, name, bottoms):125        del_filters = [self.conv_data[b][2] for b in bottoms]126        del_filter = np.union1d(del_filters[0], del_filters[1])127        print(del_filter)128        weight = []129        bias = []130        origin_channels = self.conv_data[bottoms[0]][3] - len(del_filter)131        for b in bottoms:132            if b[0:3] != 'res':133                self.conv_data[b] = self._prune(b, self._net.params[b], del_filters=del_filter)134        self.conv_data[name] = weight, bias, del_filter, origin_channels135        print("\n {} preserve num : {}".format(name, origin_channels))136    def save(self, new_model, output_weights):137        net2 = caffe.Net(new_model, caffe.TEST)138        for key in net2.params.keys():139            if key in self.conv_data:140                net2.params[key][0].data[...] = self.conv_data[key][0]141                net2.params[key][1].data[...] = self.conv_data[key][1]142            else:143                net2.params[key][0].data[...] = self._net.params[key][0].data144                net2.params[key][1].data[...] = self._net.params[key][1].data145        net2.save(output_weights)146root = "../my_model/"147prototxt = root + "TestModel_prune.prototxt"148caffemodel = root + "TestModel_prune.caffemodel"149net = caffe.Net(prototxt, caffemodel, caffe.TEST)150pruner = Prune(net)151# block1,2152# pruner.prune_conv("conv1_1_1")153# pruner.prune_conv("conv1_2_1")154# pruner.prune_conv("conv1_2_2", "conv1_2_1")155# pruner.prune_conv("conv1_3_1")156# pruner.prune_conv("conv1_3_2", "conv1_3_1")157# pruner.prune_conv("conv1_3_3", "conv1_3_2")158#159# pruner.prune_concat("conv2_1", ("conv1_1_1", "conv1_2_2", "conv1_3_3"))160# pruner.prune_conv("conv2_2", "conv2_1")161# pruner.prune_conv("conv2_3", "conv2_2")162# pruner.prune_conv("conv2_4", "conv2_3")163# pruner.prune_conv("conv2_5", "conv2_4")164# pruner.prune_conv("conv2_6", "conv2_5")165# pruner.prune_conv("conv2_7", "conv2_6")166# pruner.prune_conv("conv2_8", "conv2_7")167#168# pruner.prune_concat("conv3_1_1", ("conv2_2", "conv2_4", "conv2_6", "conv2_8"))169# pruner.prune_concat("conv3_1_1b", ("conv2_2", "conv2_4", "conv2_6", "conv2_8"))170# block3 åªæè¿ç¨171pruner.init_layer('conv3_1_1')172pruner.init_layer('conv3_2_1')173pruner.init_layer('conv3_3_1')174pruner.init_layer('conv3_4_1')175pruner.init_layer('conv3_5_1')176pruner.init_layer('conv3_6_1')177pruner.prune_conv_rude('conv3_1_1b')178pruner.prune_conv_rude("conv3_1_2", "conv3_1_1", )179pruner.prune_conv_rude("conv3_2_1", "conv3_1_2", not_del_filters=True)180pruner.prune_conv_rude("conv3_2_2", "conv3_2_1", )181pruner.prune_conv_rude("conv3_3_1", "conv3_2_2",  not_del_filters=True)182pruner.prune_conv_rude("conv3_3_2", "conv3_3_1", )183pruner.prune_conv_rude("conv3_4_1", "conv3_3_2",  not_del_filters=True)184pruner.prune_conv_rude("conv3_4_2", "conv3_4_1", )185pruner.prune_conv_rude("conv3_5_1", "conv3_4_2",  not_del_filters=True)186pruner.prune_conv_rude("conv3_5_2", "conv3_5_1", )187pruner.prune_conv_rude("conv3_6_1", "conv3_5_2",  not_del_filters=True)188pruner.prune_conv_rude("conv3_6_2", "conv3_6_1", )189pruner.prune_concat("conv4_1_1", ("conv3_2_2", "conv3_4_2", "conv3_6_2", ))190pruner.prune_concat("conv4_1_1b", ("conv3_2_2", "conv3_4_2", "conv3_6_2",))191# # block4 åªæè¿ç¨192#193# pruner.init_layer('conv4_1_1')194# pruner.init_layer('conv4_2_1')195# pruner.init_layer('conv4_3_1')196# pruner.init_layer('conv4_4_1')197# pruner.init_layer('conv4_5_1')198# pruner.init_layer('conv4_6_1')199#200# pruner.prune_conv_rude('conv4_1_1b')201# pruner.prune_conv_rude("conv4_1_2", "conv4_1_1", )202# pruner.prune_conv_rude("conv4_2_1", "conv4_1_2", not_del_filters=True)203# pruner.prune_conv_rude("conv4_2_2", "conv4_2_1", )204# pruner.prune_conv_rude("conv4_3_1", "conv4_2_2",  not_del_filters=True)205# pruner.prune_conv_rude("conv4_3_2", "conv4_3_1", )206# pruner.prune_conv_rude("conv4_4_1", "conv4_3_2",  not_del_filters=True)207# pruner.prune_conv_rude("conv4_4_2", "conv4_4_1", )208# pruner.prune_conv_rude("conv4_5_1", "conv4_4_2",  not_del_filters=True)209# pruner.prune_conv_rude("conv4_5_2", "conv4_5_1", )210# pruner.prune_conv_rude("conv4_6_1", "conv4_5_2",  not_del_filters=True)211# pruner.prune_conv_rude("conv4_6_2", "conv4_6_1", )212#213# pruner.prune_concat("conv5_1_1", ("conv4_2_2", "conv4_4_2", "conv4_6_2", ))214# pruner.prune_concat("conv5_1_1b", ("conv4_2_2", "conv4_4_2", "conv4_6_2",))215#216# # block5 åªæè¿ç¨217# pruner.init_layer('conv5_1_1')218# pruner.init_layer('conv5_2_1')219# pruner.init_layer('conv5_3_1')220# pruner.init_layer('conv5_4_1')221# pruner.init_layer('conv5_5_1')222# pruner.init_layer('conv5_6_1')223#224# pruner.prune_conv_rude('conv5_1_1b')225# pruner.prune_conv_rude("conv5_1_2", "conv5_1_1", )226# pruner.prune_conv_rude("conv5_2_1", "conv5_1_2", not_del_filters=True)227# pruner.prune_conv_rude("conv5_2_2", "conv5_2_1", )228# pruner.prune_conv_rude("conv5_3_1", "conv5_2_2",  not_del_filters=True)229# pruner.prune_conv_rude("conv5_3_2", "conv5_3_1", )230# pruner.prune_conv_rude("conv5_4_1", "conv5_3_2",  not_del_filters=True)231# pruner.prune_conv_rude("conv5_4_2", "conv5_4_1", )232# pruner.prune_conv_rude("conv5_5_1", "conv5_4_2",  not_del_filters=True)233# pruner.prune_conv_rude("conv5_5_2", "conv5_5_1", )234# pruner.prune_conv_rude("conv5_6_1", "conv5_5_2",  not_del_filters=True)235# pruner.prune_conv_rude("conv5_6_2", "conv5_6_1", )236# pruner.prune_concat('fc_svd_v', ('conv5_2_2', 'conv5_4_2', 'conv5_6_2'))237pro_new = root + "TestModel_prune_1.prototxt"...NLP3.py
Source:NLP3.py  
1import requests2import re3import requests.packages.urllib3.util.ssl_4import os5import sys6from collections import Counter78requests.packages.urllib3.util.ssl_.DEFAULT_CIPHERS = 'ALL'910global dic_rude, dic_rude_ts, dic_ts, dic_ts_link,all_station,dic_rude_cycle11dic_rude={}#['1å·çº¿':['è¹æåï¼å
¬ä¸»å']]æ¯ä¸ªçº¿ä¸çææç«ç¹12dic_rude_ts={}#['1å·çº¿',[ å
¬ä¸»å,åäºåç©é¦,â¦â¦]â¦â¦]æ¯ä¸ªçº¿ä¸çæææ¢æç«13dic_ts_rude={}#[åäºåç©é¦:['1å·çº¿'ï¼â¦â¦]]æ¢ä¹ç«è¿æ¥ç线路14dic_ts={}#[åäºåç©é¦:[]]æ¯ä¸ªæ¢ä¹ç«å¯ä»¥ç´æ¥å°è¾¾çç«ç¹15dic_ts_link={}#{'åäºåç©é¦',[å
¬ä¸»å]æ¯ä¸ªæ¢æç«å¯ç´æ¥å°è¾¾çæ¢æç«16dic_rude_cycle=['1å·çº¿','10å·çº¿']17all_station=[]1819202122def get_alldata():#ç¬è«è·åææçº¿è·¯åç«ç¹å½¢æä¸ä¸ªåå
¸23    url = r"https://www.bjsubway.com/e/action/ListInfo/?classid=39&ph=1"24    print('begin get data')25    header = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.1) Gecko/20100101 Firefox/40.1', }26    text = requests.get(url, headers=header, timeout=6, verify=False).text27    #print(text)28    text = re.findall('> \w+</th>|>\w+</th>|\w+线.*é¦', text)29    #print(text)30    firstflage = True31    dic = {}32    for i in text:33        #print(i)34        if re.findall('æ¶é´|å¾|é¦è½¦|æ«|å
¨ç¨|ç»ç¹', i):35            continue36        if re.findall('\w+线.*é¦', i):37            if firstflage:38                x = re.findall('\w+线.*é¦', i)[0][:-1]39                y = []40                firstflage = not firstflage41            else:42                dic[x] = y43                x = re.findall('\w+线.*é¦', i)[0][:-1]44                y = []45            continue46        if re.findall('> \w+</th>|>\w+</th>', i):47            temp=re.findall('> \w+<|>\w+<', i)[0][1:-1]48            y.append(temp.strip())4950    for i in dic:51        mailto = dic[i]52        addr_to = list(set(mailto))53        addr_to.sort(key=mailto.index)54        dic[i] = addr_to5556        #print(len(dic[i]), i, dic[i])57    return dic5859def get_subway_data():60    if "beijingsubway.txt"  not in os.listdir():61        dic=get_alldata()62        fw = open("beijingsubway.txt", 'w+')63        fw.write(str(dic))  # æåå
¸è½¬å为str64        fw.close()65    else:66        fr = open("beijingsubway.txt", 'r+')67        dic = eval(fr.read())  # 读åçstr转æ¢ä¸ºåå
¸68        #print(dic)69        fr.close()70    return dic71def get_global_data(dic_rude):72    global dic_rude_ts, dic_ts, dic_ts_link, all_station, dic_rude_cycle73    all_station1= []74    for i in dic_rude:75        all_station1+=dic_rude[i]76    all_station=list(set(all_station1))77    all_station1=Counter(all_station1).most_common()#ç»è®¡ç«ç¹ï¼éå¤ä¸¤æ¬¡ä¸ºæ¢æç«78    all_ts=[ i for i,j in all_station1 if j>1]79    #print(all_ts)80    #计ç®dic_rude_ts81    for i in dic_rude:82        temp=[]83        for j in all_ts:84            if j in dic_rude[i]:temp.append(j)85        dic_rude_ts[i]=temp86    #计ç®dic_ts_rude dic_ts,dic_ts_link87    for i in all_ts:88        temptsrude=[]89        ts=[]90        link=[]91        for j in dic_rude:92            if i in dic_rude[j]:93                temptsrude.append(j)94                ts+=dic_rude[j]95                link+=dic_rude_ts[j]96        dic_ts_rude[i]=temptsrude97        temp= list(set(ts))98        temp.remove(i)99        dic_ts[i] =temp#.remove(i)100        temp=list(set(link))101        temp.remove(i)102        dic_ts_link[i]=temp103104def count_station(start,des):#è®¡ç®æå ç«è·¯105    #ä¸è½ç´è¾¾è¿å-1106    #å¯ä»¥ç´è¾¾è¿åæå°ç«æ°ï¼åè¦åç线路107    result=[start,-1,des,'']#[è¹æå 8ç« åäºåç©é¦ 1å·çº¿]108    for i in dic_rude:109        if start in dic_rude[i] and des in dic_rude[i]:110            tempcount=abs(dic_rude[i].index(start)-dic_rude[i].index(des))111            if i in dic_rude_cycle:#æ¯ç¯çº¿112                tempcount=len(dic_rude[i])-tempcount if len(dic_rude[i])-tempcount<tempcount else tempcount113            if result[1]<0 or tempcount<result[1]:114                result[1]=tempcount115                result[-1]=i116    return result117def count_all_rude_station(rude):#æ´æ¡è·¯çº¿é¿åº¦118119    if len(rude)==1:return 0120    if len(rude) < 1: return -1121    return count_station(rude[0],rude[1])[1]+count_all_rude_station(rude[1:])122def say_all_rude_station(rude):#è¯´ææ´æ¡è·¯çº¿æä¹èµ°123124    if len(rude)==1:return ''125    if len(rude) < 1: return '-1'126    res=count_station(rude[0],rude[1])127    return "ä» {} åºåå {} ç»è¿ {} ç«å° {} ä¸è½¦\n".format(res[0],res[-1],res[1],res[2])+say_all_rude_station(rude[1:])128129def searchpath(start,des,stragegy):130    if start not in all_station:return 'åå§ç«ç¹ä¸åå¨'131    if des not in all_station:return 'ç»ç¹ä¸åå¨'132    #æ¯å¦å¨ä¸æ¡çº¿ä¸133    result=count_station(start,des)134    if result[1]>0:return result135    #åå§ç«136    path=[]137    pathfinish=[]138    besearch={}#å屿£ç´¢ï¼åä¸å±å¯ä»¥åæ¶å°è¾¾ä¸ä¸ªç«ç¹ï¼ä½æ¯ä¸ç¨æ£ç´¢åä¸å±çç«ç¹139    if start not in dic_ts:140        for i in dic_rude:141            if start in dic_rude[i]:142                temp=[[start,j] for j in dic_rude_ts[i]]143                path.append(temp)144    else:145        path=[[[start]]]146    #print(besearch)147    while path[0]:148        Temp=[]149        temppath=path.pop()150        while temppath:151            temppathone=temppath.pop()152            laststation=temppathone[-1]153            if laststation in besearch and count_all_rude_station(temppathone)>besearch[laststation]:154                continue155            if des in dic_ts[laststation]:156                pathfinish.append(temppathone+[des])157                continue158            else:159                besearch[laststation]=count_all_rude_station(temppathone)160                for i in dic_ts_link[laststation]:161                    Temp.append(temppathone+[i])162        path.append(Temp)163    #print(pathfinish)164    if  stragegy=='shortts':#æå°æ¢æ165        pathfinish=[i for i in pathfinish if len(i)==len(pathfinish[0])]166        sorted(pathfinish,key=count_all_rude_station)167    else:168        sorted(pathfinish, key=count_all_rude_station)169170    print(say_all_rude_station(pathfinish[0]))171172    return 0#æ²¡ææ¾å°è·¯å¾173174if __name__=="__main__":175176    flagep=False177    dic_rude=get_subway_data()178    get_global_data(dic_rude)179180    if flagep: print(dic_rude)181    if flagep: print(dic_rude_ts)182    if flagep: print(dic_ts)183    if flagep: print(dic_ts_rude)184    if flagep: print(dic_ts_link)185    if flagep: print(all_station)186
...D.py
Source:D.py  
1#!/usr/bin/env pypy32import math3n,d,m = input().split()4n = int(n)5d = int(d)6m = int(m)7A = list(map(int, input().split()))8rude = []9polite = []10for a in A:11    if a > m:12        rude += [a]13    else:14        polite += [a]15rude = sorted(rude)[::-1]16polite = sorted(polite)[::-1]17rude_prefix = [0]18for r in rude:19    rude_prefix += [rude_prefix[-1] + r]20for _ in range(n):21    rude_prefix += [rude_prefix[-1]]22polite_prefix = [0]23for p in polite:24    polite_prefix += [polite_prefix[-1] + p]25for _ in range(n):26    polite_prefix += [polite_prefix[-1]]27ans = float("-inf")28for np in range(len(polite)+1):29    polite_score = polite_prefix[np]30    rude_cells = n - np31    num_rude = math.ceil(rude_cells / (d+1))32    rude_score = rude_prefix[num_rude]33    ans = max(ans, polite_score + rude_score)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
