Best Python code snippet using hypothesis
Lanczos.py
Source:Lanczos.py  
...99    def copy_to_a_from_b(self,b):100        self.vr[:]=b.vr101    def set_value(self, n, val):102        self.vr[n]=val103    def set_to_zero(self):104        self.vr[:]=0105        106    def set_to_one(self):107        self.vr[:]=1108        109    def set_all_random(self, v):110        self.vr[:]=[random.random() for i in range(len(self.vr)) ]111        112    113    def scalare(self,b         ):114        resR =numpy.sum(self.vr*b.vr)115        return resR116    def sqrtscalare(self,b):117        assert( self is b)118        return numpy.sqrt( self.scalare(b) )119    def normalizzaauto(self):120        norma = self.sqrtscalare(self)121        self.vr[:]=self.vr/norma122        123    def normalizza(self,norma):124        self.vr.normalizza(norma)125    def rescale(self,fact):126      if(fact==0.0):127        self.set_to_zero()128      else:129        norma=1.0/fact130        self.normalizza(norma)131        132    def add_from_vect(self, b):133        self.vr[:]=self.vr+b.vr        134    135        136    def add_from_vect_with_fact(self, b, fact):137        self.vr[:]=self.vr+numpy.array([fact],self.tipo)*b.vr138def REAL(a):139    if( type(a)==type(1.0+1.0j) ):140        return a.real141    else:142        return a143def Real(x):144    if( x.__class__ == complex):145        return x.real146    else:147        return x148class Lanczos:149    dump_count=0;150    countdumpab=0151    152    def __init__(self, sparse, metrica=None, tol=1.0e-15):153        self.matrice=sparse154        self.metrica=metrica155        self.class4sparse = sparse.__class__156        try:157            self.class4vect   = self.class4sparse.getClass4Vect()158        except:159            self.class4vect   = sparse.getClass4Vect()160        self.nsteps = 0161        self.dim=self.matrice.dim162        self.q = None163        self.alpha = None164        self.beta = None165        self.omega=None166                167        self.tol = tol168        self.maxIt = 50169        self.old = False170        171    def diagoCustom(self, minDim=5, shift=None):172        if shift is  None:173            self.matrice.gohersch()174            shift = - self.matrice.goherschMax()175        self.cerca(minDim, shift)176        for ne in range(len(self.eval)):177            self.eval[ne] =  self.eval[ne] - shift178    def passeggia(self, k, m, start, gram=0, NT=4):179        if k<0 or m>self.nsteps:180            print("k = ",k," m = ",m," nsteps = ",self.nsteps)181            print("Something wrong in passe k<0 or m>nsteps")182            raise ValueError(\183                "Lanczos. Something wrong in passe k<0 or m>nsteps")184        185        sn   = math.sqrt(float(self.dim))186        eu   = 1.1e-16187        eusn = eu*sn188        if k==0:189                       190            self.class4vect.copy_to_a_from_b(self.q[0],start)191            192            if self.metrica is None:193                self.q[0].normalizzaauto()194            else:195                self.tmp4met.set_to_zero()196                self.metrica.Moltiplica( self.tmp4met , self.q[0] )197                tmpfat = math.sqrt(REAL(self.class4vect.scalare(self.q[0] , self.tmp4met)))198                self.q[0].normalizza(tmpfat)199            # self.q[0].dumptofile("q_0")200        p= self.class4vect(self.dim)201        for i in range(k,m):202            p.set_to_zero()203            # self.q[i].dumptofile("qbef_"+str(self.dump_count) )204           205            self.matrice.Moltiplica(p,self.q[i])206            if self.metrica is not None:207                208                self.tmp4met.set_to_zero()209                self.metrica.Moltiplica(self.tmp4met , self.q[i])210                self.alpha[i] = REAL(self.class4vect.scalare(p , self.tmp4met))211                212            else:213                self.alpha[i] = REAL(self.class4vect.scalare(p , self.q[i]))214            215            # p.dumptofile("p"+str(self.dump_count) )216            self.dump_count+=1217            218            if i==k:219                p.add_from_vect_with_fact( self.q[k] ,   -self.alpha[k]     ) 220                for l in range(k):221                    p.add_from_vect_with_fact( self.q[l] ,  -self.beta[l]     ) 222            else:223                # self.q[i].dumptofile("q_i"+str(self.dump_count) )224                # self.q[i-1].dumptofile("q_im1"+str(self.dump_count) )225                p.add_from_vect_with_fact(self.q[i]  ,    -self.alpha[i]    ) 226                p.add_from_vect_with_fact(self.q[i-1]  ,  -self.beta[i-1]   ) 227            # p.dumptofile("pp"+str(self.dump_count) )228            self.dump_count+=1229            230            if self.metrica is not None:231                self.tmp4met.set_to_zero()232                self.metrica.Moltiplica(self.tmp4met , p)233                self.beta[i] = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met)))234                235            else:236                self.beta[i]=self.class4vect.sqrtscalare(p,p) 237            self.omega[i,i]=1.238            max0 = 0.0239            if self.beta[i] != 0:  #and  not scipy.isnan(self.beta[i]):240                for j in range(i+1):241                    self.omega[i+1,j] = eusn242                    if j<k:243                        add = 2 * eusn + abs(self.alpha[j]-self.alpha[i]) \244                              * abs(self.omega[i,j])245                        if i!=k:246                            add += self.beta[j]*abs(self.omega[i,k])247                        if i>0 and j!=i-1:248                            add += self.beta[i-1]*abs(self.omega[i-1,j])249                        self.omega[i+1,j] += add / self.beta[i]250                       251                    elif j==k :                        252                        add = 2 * eusn + abs(self.alpha[j]-self.alpha[i]) \253                              * abs(self.omega[i,j])254                        for w in range(k):255                            add += self.beta[w]*abs(self.omega[i,w])256                        if i!=k+1:257                            add += self.beta[k]*abs(self.omega[i,k+1])258                        if i>0 and i!=k+1:259                            add += self.beta[i-1]*abs(self.omega[i-1,k])260                        self.omega[i+1,j] += add / self.beta[i]261                    elif j<i :262                        add = 2 * eusn + abs(self.alpha[j]-self.alpha[i]) \263                              * abs(self.omega[i,j])264                        if i!=j+1:265                            add += self.beta[j]*abs(self.omega[i,j+1])266                        if i>0 and j>0:267                            add += self.beta[j-1]*abs(self.omega[i-1,j-1])268                        if i>0 and i!=j+1:269                            add += self.beta[i-1]*abs(self.omega[i-1,j])270                        self.omega[i+1,j] += add / self.beta[i]271                            272                    else:273                        add = eusn274                        if i>0:275                            add += self.beta[i-1]*abs(self.omega[i,i-1] )276                        self.omega[i+1,j] += add / self.beta[i]277                    self.omega[j,i+1] = self.omega[i+1,j]278                    max0 += self.omega[i+1,j]**2279            if self.beta[i]==0 or max0>eu or gram :280##            if self.beta[i]==0 or max0>0. :281                if i>0:282                    #print " GRAMO  self.beta[i]==0 or max0>eu and i>0", i,"  ", self.dump_count283                    self.GramSchmidt(self.q[i],i, NT)284                    285                    if self.metrica is None:286                        self.q[i].normalizzaauto()287                    else:288                        self.tmp4met.set_to_zero()289                        self.metrica.Moltiplica( self.tmp4met , self.q[i] )290                        tmpfat = math.sqrt(REAL(self.class4vect.scalare(self.q[i] , self.tmp4met)))291                        self.q[i].normalizza(tmpfat)292                    p.set_to_zero()293                    294                    self.matrice.Moltiplica(p, self.q[i])295                    if self.metrica is not None:296                297                        self.tmp4met.set_to_zero()298                        self.metrica.Moltiplica(self.tmp4met , self.q[i])299                        self.alpha[i] = REAL(self.class4vect.scalare(p , self.tmp4met))300                        301                    else:302                        self.alpha[i] = REAL(self.class4vect.scalare(p , self.q[i]))303                #print " GRAMO bis ", i304##                print self.alpha[:20]305##                raise " OK " 306                    307                if self.metrica is None:308                    self.GramSchmidt(p,i+1,NT)309                    310                    self.beta[i] = self.class4vect.sqrtscalare(p,p)311                    p.normalizzaauto()312                else:313                    314                    # p.add_from_vect_with_fact( self.q[i] ,   -self.alpha[i]     )315                    # p.add_from_vect_with_fact( self.q[i-1] ,   -self.beta[i-1]     )316                    317                    self.GramSchmidt(p,i+1,NT)318                    self.tmp4met.set_to_zero()319                    self.metrica.Moltiplica(self.tmp4met , p)320                    tmpfat = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met)))321                    self.beta[i] = tmpfat322                    p.normalizza(tmpfat)323                if i>0:324                    condition = eu * \325                                math.sqrt(self.dim * (self.alpha[i]**2+\326                                                      self.beta[i-1]**2))327                else:328                    condition = eu * math.sqrt(self.dim * (self.alpha[i]**2))329                if self.beta[i]< condition:330                    331                    self.beta[i]=0.332                    333                    p.set_all_random(1.0)334                    335                    self.GramSchmidt(p,i+1)336                    if self.metrica is None:337                        p.normalizzaauto()338                    else:339                        self.tmp4met.set_to_zero()340                        self.metrica.Moltiplica( self.tmp4met , p )341                        tmpfat = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met)))342                        p.normalizza(tmpfat)343                for l in range(i) :344                    self.omega[i,l]=self.omega[l,i]=eusn345                for l in range(i+1):346                    self.omega[i+1,l]=self.omega[l,i+1]=eusn347                    348            else:349                if self.metrica is None:350                    p.normalizzaauto()351                else:352                    self.tmp4met.set_to_zero()353                    self.metrica.Moltiplica( self.tmp4met , p )354                    tmpfat = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met)))355                    p.normalizza(tmpfat)356                357                # p.dumptofile("normprelude"+str(self.dump_count))358            self.class4vect.copy_to_a_from_b(self.q[i+1],p)359          360    def GramSchmidt(self, vect , n, NT=4):361        for h in range(NT):362            if self.metrica is None :363                for i in range(n):364                    s=self.class4vect.scalare( self.q[i], vect)365                    vect.add_from_vect_with_fact(self.q[i],-s)366            else:367                self.tmp4met.set_to_zero()368                self.metrica.Moltiplica(self.tmp4met, vect)369                for i in range(n):370                    371                    s=self.class4vect.scalare( self.q[i], self.tmp4met)372                    vect.add_from_vect_with_fact(self.q[i],-s)373                374    def allocaMemory(self):375        self.alpha = numpy.zeros(self.nsteps,numpy.float64)376        self.beta  = numpy.zeros(self.nsteps,numpy.float64)377        self.omega = numpy.zeros((self.nsteps+1,self.nsteps+1),numpy.float64)378        self.evect = numpy.zeros((self.nsteps,self.nsteps),numpy.float64)379        self.eval  = numpy.zeros((self.nsteps),numpy.float64)380        self.oldalpha = numpy.zeros((self.nsteps),numpy.float64)381        ...Threshold.py
Source:Threshold.py  
...27    def set_relative_area(self, relative_area):28        try:29            self.relative_area = str(float(relative_area))30        except (ValueError, TypeError):31            self.relative_area = self.set_to_zero()32    def set_saturation(self, saturation):33        try:34            self.saturation = str(float(saturation))35        except (ValueError, TypeError):36            self.saturation = self.set_to_zero()37    def set_peak_probability(self, peak_probability):38            try:39                self.peak_probability = str(float(peak_probability))40            except (ValueError, TypeError):41                self.peak_probability = self.set_to_zero()42    def set_absolute_area(self, absolute_area):43        try:44            self.absolute_area = str(float(absolute_area))45        except (ValueError, TypeError):46            self.absolute_area = self.set_to_zero()47    def set_min_merge_difference(self, min_merge_difference):48        try:49            self.min_merge_difference = str(float(min_merge_difference))50        except (ValueError, TypeError):51            self.min_merge_difference = self.set_to_zero()52    def set_absolute_height(self, absolute_height):53        try:54            self.absolute_height = str(float(absolute_height))55        except Exception as e:56            self.absolute_height = self.set_to_zero()57    def set_relative_height(self, relative_height):58        try:59            self.relative_height = str(float(relative_height))60        except (ValueError, TypeError):61            self.relative_height = self.set_to_zero()62    def set_signal_to_noise(self, signal_to_noise):63        try:64            self.signal_to_noise = str(float(signal_to_noise))65        except (ValueError, TypeError):66            self.signal_to_noise = self.set_to_zero()67    def set_second_derivative(self, second_derivative):68        try:69            self.second_derivative = str(float(second_derivative))70        except (ValueError, TypeError):71            self.second_derivative = self.set_to_zero()72    def set_first_derivative(self, first_derivative):73        try:74            self.first_derivative = str(float(first_derivative))75        except (ValueError, TypeError):76            self.first_derivative = str(0)77    def set_relative_low_std_area(self, relative_low_std_area):78        try:79            self.relative_low_std_area = str(float(relative_low_std_area))80        except (ValueError, TypeError):81            self.relative_low_std_area = ""82    def set_relative_low_std_height(self, relative_low_std_height):83        try:84            self.relative_low_std_height = str(float(relative_low_std_height))85        except (ValueError, TypeError):86            self.relative_low_std_height = ""87    def set_to_zero(self):...63. Unique Paths II.py
Source:63. Unique Paths II.py  
1"""2A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).3The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).4Now consider if some obstacles are added to the grids. How many unique paths would there be?5An obstacle and space is marked as 1 and 0 respectively in the grid.6Example 1:7Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]8Output: 29Explanation: There is one obstacle in the middle of the 3x3 grid above.10There are two ways to reach the bottom-right corner:111. Right -> Right -> Down -> Down122. Down -> Down -> Right -> Right13Example 2:14Input: obstacleGrid = [[0,1],[0,0]]15Output: 116"""17class Solution(object):18    def uniquePathsWithObstacles(self, obstacleGrid):19        """20        :type obstacleGrid: List[List[int]]21        :rtype: int22        """23        if not obstacleGrid:24            return 025        m = len(obstacleGrid)  # number of rows26        n = len(obstacleGrid[0])  # number of cols27        if obstacleGrid[0][0] == 1 or obstacleGrid[m - 1][n - 1] == 1:28            return 029        dp = [[0 for _ in range(n)] for _ in range(m)]30        # initialize the last row31        set_to_zero = False32        for c in range(n - 1, -1, -1):33            if obstacleGrid[m - 1][c] == 1:34                set_to_zero = True35            dp[m - 1][c] = 0 if set_to_zero else 136        # initialize the lasr col37        set_to_zero = False38        for r in range(m - 1, -1, -1):39            if obstacleGrid[r][n - 1] == 1:40                set_to_zero = True41            dp[r][n - 1] = 0 if set_to_zero else 142        for r in range(m - 2, -1, -1):43            for c in range(n - 2, -1, -1):44                if obstacleGrid[r][c] == 1:45                    dp[r][c] = 046                else:47                    dp[r][c] = dp[r + 1][c] + dp[r][c + 1]...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
