Best Python code snippet using localstack_python
DAE_AFE_lossweight.py
Source:DAE_AFE_lossweight.py  
1import os, sys2import numpy as np3print 'Read Multi Data Start ...'4current_path = '/home/ding/Forgithub/'5baseDir = current_path6trainingSet = 'multi/'7subDir = [ 'clean1' , 'clean2' , 'clean3' , 'clean4' , 8           'N1_SNR5' , 'N2_SNR5' , 'N3_SNR5' , 'N4_SNR5',9           'N1_SNR10', 'N2_SNR10', 'N3_SNR10', 'N4_SNR10',10           'N1_SNR15', 'N2_SNR15', 'N3_SNR15', 'N4_SNR15',11           'N1_SNR20', 'N2_SNR20', 'N3_SNR20', 'N4_SNR20']12training_list = []13multiTR_path = []14num_frame_group = 1115multi_length = []16multi_clean = []17multi_SNR20 = []18multi_SNR15 = []19multi_SNR10 = []20multi_SNR5 = []21for h in range(len(subDir)):22    dirs = os.listdir(baseDir + trainingSet + subDir[h])23    for num in range(len(dirs)):24		25        tmp = np.loadtxt(baseDir + trainingSet + subDir[h] + '/' + dirs[num])26	   27        multi_length.append(tmp.size/39)28        29        multiTR_path.append(baseDir + trainingSet + '/' + dirs[num])30        zero = np.zeros(((num_frame_group -1)/2,39))31        tmp = np.concatenate((zero, tmp), axis=0)32        tmp = np.concatenate((tmp, zero), axis=0)33		# CMVN34        tmp = np.transpose(tmp)35	36        cur_mean = np.mean(tmp, axis=1)37        cur_std  = np.std(tmp, axis=1, ddof=1)38        tmp = tmp - cur_mean[:, None]39        tmp = tmp / cur_std[:, None]40        tmp = np.nan_to_num(tmp)41	42        tmp = np.transpose(tmp)43		44        for num_split_group in range(tmp.size/39-num_frame_group+1): 45			46			temp_data = np.concatenate((tmp[num_split_group], tmp[num_split_group+1], tmp[num_split_group+2], tmp[num_split_group+3], tmp[num_split_group+4], tmp[num_split_group+5], tmp[num_split_group+6], tmp[num_split_group+7], tmp[num_split_group+8], tmp[num_split_group+9], tmp[num_split_group+10]), axis=0)47			training_list.append(temp_data)48			if h<4 :49			    multi_clean.append(temp_data)50			elif h>=4 and h<8 :51			    multi_SNR5.append(temp_data)52			elif h>=8 and h<12 :53			    multi_SNR10.append(temp_data)54			elif h>=12 and h<16 :55			    multi_SNR15.append(temp_data)56			elif h>=16 and h<20 :57			    multi_SNR20.append(temp_data)58x_train_multi = np.array(training_list)59multi_clean = np.array(multi_clean)60multi_SNR5 = np.array(multi_SNR5)61multi_SNR10 = np.array(multi_SNR10)62multi_SNR15 = np.array(multi_SNR15)63multi_SNR20 = np.array(multi_SNR20)64print 'Read Multi Data End ...'65print 'Read Clean Data Start ...'66baseDir = current_path67trainingSet = 'clean/'68training_list = []69clean_clean = []70clean_SNR20 = []71clean_SNR15 = []72clean_SNR10 = []73clean_SNR5 = []74for h in range(len(subDir)):75    dirs = os.listdir(baseDir + trainingSet + subDir[h])76    for num in range(len(dirs)):77		78		tmp = np.loadtxt(baseDir + trainingSet + subDir[h] + '/' + dirs[num])79		    80		tmp = np.transpose(tmp)81	82		cur_mean = np.mean(tmp, axis=1)83		cur_std  = np.std(tmp, axis=1, ddof=1)84		tmp = tmp - cur_mean[:, None]85		tmp = tmp / cur_std[:, None]86		tmp = np.nan_to_num(tmp)87	88		tmp = np.transpose(tmp)89	90		for i in range(len(tmp)):91		    training_list.append(tmp[i])92		    if h<4 :93			    clean_clean.append(tmp[i])94		    elif h>=4 and h<8 :95			    clean_SNR5.append(tmp[i])96		    elif h>=8 and h<12 :97			    clean_SNR10.append(tmp[i])98		    elif h>=12 and h<16 :99			    clean_SNR15.append(tmp[i])100		    elif h>=16 and h<20 :101			    clean_SNR20.append(tmp[i])102          103x_train_clean = np.array(training_list)104clean_clean = np.array(clean_clean)105clean_SNR5 = np.array(clean_SNR5)106clean_SNR10 = np.array(clean_SNR10)107clean_SNR15 = np.array(clean_SNR15)108clean_SNR20 = np.array(clean_SNR20)109print 'Read Clean Data End ...'110print 'Start training ...'111from keras.layers import *112from keras.models import *113import keras.optimizers114cleanw = []115SNR5w = []116SNR10w = []117SNR15w = []118SNR20w = []119for i in range(273713) : #clean120    cleanw.append(1.0)121for i in range(276048) : #5dB122    SNR5w.append(1.0)123for i in range(272158) : #10dB124    SNR10w.append(1.0)125for i in range(271282) : #15dB126    SNR15w.append(1.0)127for i in range(270481) : #20dB128    SNR20w.append(1.0)129cleanw = np.array(cleanw)130SNR5w = np.array(SNR5w)131SNR10w = np.array(SNR10w)132SNR15w = np.array(SNR15w)133SNR20w = np.array(SNR20w)134weightloss = np.concatenate((cleanw,SNR5w,SNR10w,SNR15w,SNR20w) , axis=0)135leakyrelu = keras.layers.LeakyReLU(alpha=0.3)136# optimizer137adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=1e-5)138# instantiate model139model = Sequential()140model.add(Dense(500, input_dim=429))141model.add(leakyrelu)142model.add(Dense(500))143model.add(leakyrelu)144model.add(Dense(273))145model.add(leakyrelu)146model.add(Dense(300))147model.add(leakyrelu)148model.add(Dense(300))149model.add(leakyrelu)150model.add(Dense(39))151model.compile(loss='mse', optimizer=adam)152rclean=[]153rSNR5=[]154rSNR10=[]155rSNR15=[]156rSNR20=[]157rclean.append(1.0)158rSNR5.append(1.0)159rSNR10.append(1.0)160rSNR15.append(1.0)161rSNR20.append(1.0)162alphac = 0.1163alpha5 = 0.1164alpha10 = 0.1165alpha15 = 0.1166alpha20 = 0.1167for epoch in range(1) :168    model.fit(x_train_multi, x_train_clean, epochs=1, batch_size=100, shuffle=True, sample_weight=weightloss)169    loss_clean = model.evaluate(multi_clean, clean_clean, verbose=0, batch_size=500)170    loss_SNR5  = model.evaluate(multi_SNR5 , clean_SNR5 , verbose=0, batch_size=500)171    loss_SNR10 = model.evaluate(multi_SNR10, clean_SNR10, verbose=0, batch_size=500)172    loss_SNR15 = model.evaluate(multi_SNR15, clean_SNR15, verbose=0, batch_size=500)173    loss_SNR20 = model.evaluate(multi_SNR20, clean_SNR20, verbose=0, batch_size=500)174   175    avgloss = (loss_clean + loss_SNR5 + loss_SNR10 + loss_SNR15 + loss_SNR20)/5176    177    weightloss = []178    cleanw = cleanw + alphac*(loss_clean-avgloss)179    SNR5w  = SNR5w  + alpha5*(loss_SNR5-avgloss)180    SNR10w = SNR10w + alpha10*(loss_SNR10-avgloss)181    SNR15w = SNR15w + alpha15*(loss_SNR15-avgloss)182    SNR20w = SNR20w + alpha20*(loss_SNR20-avgloss)183    184    weightloss = np.concatenate((cleanw,SNR5w,SNR10w,SNR15w,SNR20w) , axis=0)185    alpha5  = alpha5  * 0.95186    alpha10 = alpha10 * 0.95187    alpha15 = alpha15 * 0.95188    alpha20 = alpha20 * 0.95189    alphac  = alphac  * 0.95190    rclean.append(cleanw[0])191    rSNR5.append(SNR5w[0])192    rSNR10.append(SNR10w[0])193    rSNR15.append(SNR15w[0])194    rSNR20.append(SNR20w[0])195    196    print 'Epoch = ', epoch+2197print 'training is over.'198rrclean = np.array(rclean)199rrSNR5 = np.array(rSNR5)200rrSNR10 = np.array(rSNR10)201rrSNR15 = np.array(rSNR15)202rrSNR20 = np.array(rSNR20)203np.savetxt('clean.txt', rrclean)204np.savetxt('SNR5.txt' , rrSNR5)205np.savetxt('SNR10.txt', rrSNR10)206np.savetxt('SNR15.txt', rrSNR15)207np.savetxt('SNR20.txt', rrSNR20)208print 'record is over'209cleanw = None210SNR5w = None211SNR10w = None212SNR15w = None213SNR20w = None214weightloss = None215print 'Create Directory ...'216output_dir = 'Output_DAE_AFE_lossweight1'217os.makedirs(current_path + output_dir)218os.makedirs(current_path + output_dir + '/multi')219os.makedirs(current_path + output_dir + '/testA')220os.makedirs(current_path + output_dir + '/testB')221os.makedirs(current_path + output_dir + '/testC')222os.makedirs(current_path + output_dir + '/testA/clean1')223os.makedirs(current_path + output_dir + '/testA/clean2')224os.makedirs(current_path + output_dir + '/testA/clean3')225os.makedirs(current_path + output_dir + '/testA/clean4')226os.makedirs(current_path + output_dir + '/testA/N1_SNR0')227os.makedirs(current_path + output_dir + '/testA/N1_SNR5')228os.makedirs(current_path + output_dir + '/testA/N1_SNR10')229os.makedirs(current_path + output_dir + '/testA/N1_SNR15')230os.makedirs(current_path + output_dir + '/testA/N1_SNR20')231os.makedirs(current_path + output_dir + '/testA/N1_SNR-5')232os.makedirs(current_path + output_dir + '/testA/N2_SNR0')233os.makedirs(current_path + output_dir + '/testA/N2_SNR5')234os.makedirs(current_path + output_dir + '/testA/N2_SNR10')235os.makedirs(current_path + output_dir + '/testA/N2_SNR15')236os.makedirs(current_path + output_dir + '/testA/N2_SNR20')237os.makedirs(current_path + output_dir + '/testA/N2_SNR-5')238os.makedirs(current_path + output_dir + '/testA/N3_SNR0')239os.makedirs(current_path + output_dir + '/testA/N3_SNR5')240os.makedirs(current_path + output_dir + '/testA/N3_SNR10')241os.makedirs(current_path + output_dir + '/testA/N3_SNR15')242os.makedirs(current_path + output_dir + '/testA/N3_SNR20')243os.makedirs(current_path + output_dir + '/testA/N3_SNR-5')244os.makedirs(current_path + output_dir + '/testA/N4_SNR0')245os.makedirs(current_path + output_dir + '/testA/N4_SNR5')246os.makedirs(current_path + output_dir + '/testA/N4_SNR10')247os.makedirs(current_path + output_dir + '/testA/N4_SNR15')248os.makedirs(current_path + output_dir + '/testA/N4_SNR20')249os.makedirs(current_path + output_dir + '/testA/N4_SNR-5')250os.makedirs(current_path + output_dir + '/testB/clean1')251os.makedirs(current_path + output_dir + '/testB/clean2')252os.makedirs(current_path + output_dir + '/testB/clean3')253os.makedirs(current_path + output_dir + '/testB/clean4')254os.makedirs(current_path + output_dir + '/testB/N1_SNR0')255os.makedirs(current_path + output_dir + '/testB/N1_SNR5')256os.makedirs(current_path + output_dir + '/testB/N1_SNR10')257os.makedirs(current_path + output_dir + '/testB/N1_SNR15')258os.makedirs(current_path + output_dir + '/testB/N1_SNR20')259os.makedirs(current_path + output_dir + '/testB/N1_SNR-5')260os.makedirs(current_path + output_dir + '/testB/N2_SNR0')261os.makedirs(current_path + output_dir + '/testB/N2_SNR5')262os.makedirs(current_path + output_dir + '/testB/N2_SNR10')263os.makedirs(current_path + output_dir + '/testB/N2_SNR15')264os.makedirs(current_path + output_dir + '/testB/N2_SNR20')265os.makedirs(current_path + output_dir + '/testB/N2_SNR-5')266os.makedirs(current_path + output_dir + '/testB/N3_SNR0')267os.makedirs(current_path + output_dir + '/testB/N3_SNR5')268os.makedirs(current_path + output_dir + '/testB/N3_SNR10')269os.makedirs(current_path + output_dir + '/testB/N3_SNR15')270os.makedirs(current_path + output_dir + '/testB/N3_SNR20')271os.makedirs(current_path + output_dir + '/testB/N3_SNR-5')272os.makedirs(current_path + output_dir + '/testB/N4_SNR0')273os.makedirs(current_path + output_dir + '/testB/N4_SNR5')274os.makedirs(current_path + output_dir + '/testB/N4_SNR10')275os.makedirs(current_path + output_dir + '/testB/N4_SNR15')276os.makedirs(current_path + output_dir + '/testB/N4_SNR20')277os.makedirs(current_path + output_dir + '/testB/N4_SNR-5')278os.makedirs(current_path + output_dir + '/testC/clean1')279os.makedirs(current_path + output_dir + '/testC/clean2')280os.makedirs(current_path + output_dir + '/testC/N1_SNR0')281os.makedirs(current_path + output_dir + '/testC/N1_SNR5')282os.makedirs(current_path + output_dir + '/testC/N1_SNR10')283os.makedirs(current_path + output_dir + '/testC/N1_SNR15')284os.makedirs(current_path + output_dir + '/testC/N1_SNR20')285os.makedirs(current_path + output_dir + '/testC/N1_SNR-5')286os.makedirs(current_path + output_dir + '/testC/N2_SNR0')287os.makedirs(current_path + output_dir + '/testC/N2_SNR5')288os.makedirs(current_path + output_dir + '/testC/N2_SNR10')289os.makedirs(current_path + output_dir + '/testC/N2_SNR15')290os.makedirs(current_path + output_dir + '/testC/N2_SNR20')291os.makedirs(current_path + output_dir + '/testC/N2_SNR-5')292print 'Start testing ...'293print 'Multi train data put into model...'294x_train_multi_new = model.predict(x_train_multi, batch_size=500)295print 'End Feeding ...'296print 'Write multi train data into directory ...'297index_count = 0298temp = []299for file_num in range(len(multi_length)): 300    for frame_num in range(multi_length[file_num]): 301        temp = np.concatenate((temp, x_train_multi_new[index_count + frame_num]), axis=0) 302    303    temp = temp.reshape(multi_length[file_num],39)304    305    temp = np.transpose(temp)306    savepath = multiTR_path[file_num].replace('multi',output_dir+'/multi')307    savefile = savepath.split('.')308    np.save(savefile[0], temp)309    310    index_count = index_count + multi_length[file_num]311        312    temp=[]313for testindex in ['testA/', 'testB/', 'testC/'] :314	315	baseDir = current_path316	trainingSet = testindex317	if testindex != 'testC/' :318		subDir = ['clean1', 'N1_SNR0', 'N1_SNR5', 'N1_SNR10', 'N1_SNR15', 'N1_SNR20', 'N1_SNR-5',319		'clean2', 'N2_SNR0', 'N2_SNR5', 'N2_SNR10', 'N2_SNR15', 'N2_SNR20', 'N2_SNR-5',320		'clean3', 'N3_SNR0', 'N3_SNR5', 'N3_SNR10', 'N3_SNR15', 'N3_SNR20', 'N3_SNR-5',321		'clean4', 'N4_SNR0', 'N4_SNR5', 'N4_SNR10', 'N4_SNR15', 'N4_SNR20', 'N4_SNR-5',]322	else :323		subDir = ['clean1', 'N1_SNR0', 'N1_SNR5', 'N1_SNR10', 'N1_SNR15', 'N1_SNR20', 'N1_SNR-5',324		'clean2', 'N2_SNR0', 'N2_SNR5', 'N2_SNR10', 'N2_SNR15', 'N2_SNR20', 'N2_SNR-5']325	set_list = []326	set_path = []327	num_frame_group = 11328	set_length = []329	for h in range(len(subDir)):330		dirs = os.listdir(baseDir + trainingSet + subDir[h])331		332		for num in range(len(dirs)):333		    tmp = np.loadtxt(baseDir + trainingSet + subDir[h] + '/' + dirs[num])334		    set_length.append(tmp.size/39)335		    set_path.append(baseDir + trainingSet + subDir[h] +'/' + dirs[num])336		    zero = np.zeros(((num_frame_group -1)/2,39))337		    tmp = np.concatenate((zero, tmp), axis=0)338		    tmp = np.concatenate((tmp, zero), axis=0)339		    tmp = np.transpose(tmp)340		341		    cur_mean = np.mean(tmp, axis=1)342		    cur_std  = np.std(tmp, axis=1, ddof=1)343		    tmp = tmp - cur_mean[:, None]344		    tmp = tmp / cur_std[:, None]345		    tmp = np.nan_to_num(tmp)346		347		    tmp = np.transpose(tmp)348		    349		    for num_split_group in range(tmp.size/39-num_frame_group+1):350		        351		        temp_data = np.concatenate((tmp[num_split_group], tmp[num_split_group+1], tmp[num_split_group+2], tmp[num_split_group+3], tmp[num_split_group+4], tmp[num_split_group+5], tmp[num_split_group+6], tmp[num_split_group+7], tmp[num_split_group+8], tmp[num_split_group+9], tmp[num_split_group+10]), axis=0)352		        set_list.append(temp_data)353		354		x_test = np.array(set_list)355		356		x_test_new = model.predict(x_test, batch_size=500)357		358		index_count = 0359		temp = []360		for file_num in range(len(set_length)):361		    for frame_num in range(set_length[file_num]):362		        temp = np.concatenate((temp, x_test_new[index_count + frame_num]), axis=0)363		    364		    temp = temp.reshape(set_length[file_num],39)365		366		    temp = np.transpose(temp)367		    savepath = set_path[file_num].replace(testindex,output_dir+'/'+testindex)368		    savefile = savepath.split('.')369		    np.save(savefile[0], temp)370		    371		    index_count = index_count + set_length[file_num]372		    373		    temp=[]374		set_list = []375		set_path = []...jumpsolve.py
Source:jumpsolve.py  
1#main function receiving data about the puzzle2def main():3    y = int(input("What is the length of the puzzle? "))4    x = int(input("What is the breadth of the puzzle? "))5    x1 = int(input("What is the x position of the start tile? "))6    y1 = int(input("What is the y position of the start tile? "))7    xG = int(input("What is the x position of the goal tile? "))8    yG = int(input("What is the y position of the goal tile? "))9    start = (x1,y1)10    goal = (xG,yG)11    board = list()12    for i in range(x):13        row = list()14        for j in range(y):15            temp = int(input("What is the value at the (" + str(i) + ", " + str(j) + ") tile? "))16            row.append(temp)17        board.append(row)18    astar_solution = jumpsolve_astar(start, goal, board)19    print("This is the A* Solution: ")20    print(astar_solution)21    bfs_solution = jumpsolve_bfs(start, goal, board)22    print("This is the BFS Solution:")23    print(bfs_solution)24    ids_solution = jumpsolve_ids(start, goal, board)25    print("This is the IDS Solution: ")26    print(ids_solution)2728#astar search implementation29def jumpsolve_astar(start, goal, board):30    astar_queue_list = list()31    current = start32    current_path = list()33    current_path.append(start)34    while (1):35        print(current)36        if ((current[1]-board[current[0]][current[1]]) >= 0) and board[current[0]][current[1]] != 0:37            temp_option = (current[0],(current[1]-board[current[0]][current[1]]))38            current_path.append(temp_option)39            if goal in current_path:40                break41            temp_list = current_path[:]42            astar_queue_list.append(temp_list)43            current_path.pop()44        if ((current[0]-board[current[0]][current[1]]) >= 0) and board[current[0]][current[1]] != 0:45            temp_option = ((current[0]-board[current[0]][current[1]]),current[1])46            current_path.append(temp_option)47            if goal in current_path:48                break49            temp_list = current_path[:]50            astar_queue_list.append(temp_list)51            current_path.pop()52        if ((current[1]+board[current[0]][current[1]]) < len(board[0])) and board[current[0]][current[1]] != 0:53            temp_option = (current[0], (current[1] + board[current[0]][current[1]]))54            current_path.append(temp_option)55            if goal in current_path:56                break57            temp_list = current_path[:]58            astar_queue_list.append(temp_list)59            current_path.pop()60        if ((current[0]+board[current[0]][current[1]]) < len(board)) and board[current[0]][current[1]] != 0:61            temp_option = ((current[0]+board[current[0]][current[1]]),current[1])62            current_path.append(temp_option)63            if goal in current_path:64                break65            temp_list = current_path[:]66            astar_queue_list.append(temp_list)67            current_path.pop()68        print(astar_queue_list)69        options_rating = list()70        for i in range(len(astar_queue_list)):71            options_rating.append(f_n(astar_queue_list[i],goal,board))72        print(options_rating)73        min_rating = min(options_rating)74        choice = options_rating.index(min_rating)75        current_path = astar_queue_list.pop(choice)76        current = current_path[-1]77    return current_path7879#heuristic function for astar search80def h_n(option, goal, board):81    return ((max(option[0],goal[0]) - min(option[0],goal[0])) + (max(option[1],goal[1]) - min(option[1],goal[1])))/(len(board))8283#calculating path cost for astar search84def g_n(option_path):85    return (len(option_path)-1)8687#calculating the sum of heuristic function and path cost88def f_n(option_path,goal,board):89    return g_n(option_path) + h_n(option_path[-1],goal,board)9091#implementation of breadth-first search92def jumpsolve_bfs(start, goal, board):93    bfs_queue_list = list()94    current = start95    current_path = list()96    current_path.append(start)97    while (1):98        if ((current[1]-board[current[0]][current[1]]) >= 0) and board[current[0]][current[1]] != 0:99            temp_option = (current[0],(current[1]-board[current[0]][current[1]]))100            current_path.append(temp_option)101            if goal in current_path:102                break103            temp_list = current_path[:]104            bfs_queue_list.append(temp_list)105            current_path.pop()106        if ((current[0]-board[current[0]][current[1]]) >= 0) and board[current[0]][current[1]] != 0:107            temp_option = ((current[0]-board[current[0]][current[1]]),current[1])108            current_path.append(temp_option)109            if goal in current_path:110                break111            temp_list = current_path[:]112            bfs_queue_list.append(temp_list)113            current_path.pop()114        if ((current[1]+board[current[0]][current[1]]) < len(board[0])) and board[current[0]][current[1]] != 0:115            temp_option = (current[0], (current[1] + board[current[0]][current[1]]))116            current_path.append(temp_option)117            if goal in current_path:118                break119            temp_list = current_path[:]120            bfs_queue_list.append(temp_list)121            current_path.pop()122        if ((current[0]+board[current[0]][current[1]]) < len(board)) and board[current[0]][current[1]] != 0:123            temp_option = ((current[0]+board[current[0]][current[1]]),current[1])124            current_path.append(temp_option)125            if goal in current_path:126                break127            temp_list = current_path[:]128            bfs_queue_list.append(temp_list)129            current_path.pop()130        current_path = bfs_queue_list.pop(0)131        current = current_path[-1]132    return current_path133134#implementation of iterative depth search, starting with limit = 1135def jumpsolve_ids(start, goal, board):136    ids_queue_list = list()137    current = start138    current_path = list()139    current_path.append(start)140    limit = 1141    while (1):142        if ((current[1] - board[current[0]][current[1]]) >= 0) and board[current[0]][current[1]] != 0:143            temp_option = (current[0], (current[1] - board[current[0]][current[1]]))144            current_path.append(temp_option)145            if goal in current_path:146                break147            temp_list = current_path[:]148            if len(temp_list)<=(limit+1):149                ids_queue_list.append(temp_list)150            current_path.pop()151        if ((current[0] - board[current[0]][current[1]]) >= 0) and board[current[0]][current[1]] != 0:152            temp_option = ((current[0] - board[current[0]][current[1]]), current[1])153            current_path.append(temp_option)154            if goal in current_path:155                break156            temp_list = current_path[:]157            if len(temp_list)<=(limit+1):158                ids_queue_list.append(temp_list)159            current_path.pop()160        if ((current[1] + board[current[0]][current[1]]) < len(board[0])) and board[current[0]][current[1]] != 0:161            temp_option = (current[0], (current[1] + board[current[0]][current[1]]))162            current_path.append(temp_option)163            if goal in current_path:164                break165            temp_list = current_path[:]166            if len(temp_list)<=(limit+1):167                ids_queue_list.append(temp_list)168            current_path.pop()169        if ((current[0] + board[current[0]][current[1]]) < len(board)) and board[current[0]][current[1]] != 0:170            temp_option = ((current[0] + board[current[0]][current[1]]), current[1])171            current_path.append(temp_option)172            if goal in current_path:173                break174            temp_list = current_path[:]175            if len(temp_list)<=(limit+1):176                ids_queue_list.append(temp_list)177            current_path.pop()178        if(len(ids_queue_list)==0):179            limit+=1180            current = start181            current_path = []182            current_path.append(start)183        else:184            current_path = ids_queue_list.pop()185            current = current_path[-1]186    return current_path187188#calling the main function to activate program
...reformatDataGEO.py
Source:reformatDataGEO.py  
1import os2#function to rename GEO barcodes, genes, and matrix files and prepare appropriate folders for Seurat3def moveGEO():4    current_path = os.getcwd()   #change into GEO data folder directory5    folder = "/mouse_heart_GEO_data"6    os.chdir(current_path + folder)7    #prepare folders for 4 zomes of the heart8    SAN_folder = '/SAN_GEO' #ZONE I9    AVN_folder = '/AVN_GEO' #ZONE II10    LPF_folder = '/LPF_GEO' #ZONE III11    RPF_folder = '/RPF_GEO' #ZONE III12    #create folders for each zone13    os.mkdir(current_path + folder + SAN_folder)14    os.mkdir(current_path + folder + AVN_folder)15    os.mkdir(current_path + folder + LPF_folder)16    os.mkdir(current_path + folder + RPF_folder)17    #move files into designated folders18    os.system('mv ' + current_path + folder + '/GSM3885058_SANbarcodes.tsv.gz ' + current_path + folder + SAN_folder + '/barcodes.tsv.gz')19    os.system('mv ' + current_path + folder + '/GSM3885058_SANgenes.tsv.gz ' + current_path + folder + SAN_folder  + '/features.tsv.gz')20    os.system('mv ' + current_path + folder + '/GSM3885058_SANmatrix.mtx.gz ' + current_path + folder + SAN_folder  + '/matrix.mtx.gz')21    os.system('mv ' + current_path + folder + '/GSM3885059_AVNbarcodes.tsv.gz ' + current_path + folder + AVN_folder + '/barcodes.tsv.gz')22    os.system('mv ' + current_path + folder + '/GSM3885059_AVNgenes.tsv.gz ' + current_path + folder + AVN_folder  + '/features.tsv.gz')23    os.system('mv ' + current_path + folder + '/GSM3885059_AVNmatrix.mtx.gz ' + current_path + folder + AVN_folder + '/matrix.mtx.gz')24    os.system('mv ' + current_path + folder + '/GSM3885060_LPFbarcodes.tsv.gz ' + current_path + folder + LPF_folder + '/barcodes.tsv.gz')25    os.system('mv ' + current_path + folder + '/GSM3885060_LPFgenes.tsv.gz ' + current_path + folder + LPF_folder  + '/features.tsv.gz')26    os.system('mv ' + current_path + folder + '/GSM3885060_LPFmatrix.mtx.gz ' + current_path + folder + LPF_folder + '/matrix.mtx.gz')27    os.system('mv ' + current_path + folder + '/GSM3885061_RPFbarcodes.tsv.gz ' + current_path + folder + RPF_folder + '/barcodes.tsv.gz')28    os.system('mv ' + current_path + folder + '/GSM3885061_RPFgenes.tsv.gz ' + current_path + folder + RPF_folder  + '/features.tsv.gz')29    os.system('mv ' + current_path + folder + '/GSM3885061_RPFmatrix.mtx.gz ' + current_path + folder + RPF_folder + '/matrix.mtx.gz')...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
