Best Python code snippet using localstack_python
agreement_score.py
Source:agreement_score.py  
...101            total_agreement = 0102            total_messages = 0103            skipped = 0104            try:105                annot1threads = annotationDataset.groupby("annotator1Name").get_group(annotatorname).thread.unique()106            except:107                annot1threads = []108            try:109                annot2threads = annotationDataset.groupby("annotator2Name").get_group(annotatorname).thread.unique()110            except:111                annot2threads = []112            try:113                annot3threads = annotationDataset.groupby("annotator3Name").get_group(annotatorname).thread.unique()114            except:115                annot3threads =[]116            for thread in annot1threads:117                if not annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0] in removedAnnotators \118                        and type(annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0]) == str:119                    comp12emp = annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy == \120                                annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy121                    comp12askemp = annotationDataset.groupby('thread').get_group(thread).annotator1AskEmpathy == \122                                   annotationDataset.groupby('thread').get_group(thread).annotator2AskEmpathy123                    comp12cta = annotationDataset.groupby('thread').get_group(thread).annotator1CallToAction == \124                                annotationDataset.groupby('thread').get_group(thread).annotator2CallToAction125                    comp12isans = annotationDataset.groupby('thread').get_group(thread).annotator1IsAnswer == \126                                  annotationDataset.groupby('thread').get_group(thread).annotator2IsAnswer127                    comp12isq = annotationDataset.groupby('thread').get_group(thread).annotator1IsQuestion == \128                                annotationDataset.groupby('thread').get_group(thread).annotator2IsQuestion129                    multiplier12 = scoredict[annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0]]130                    for i, _ in enumerate(comp12emp):131                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1AskEmpathy)[i]) == float:132                            comp12askemp[i] = False # don't count nan as agreeing133                            total_messages -= 1134                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1CallToAction)[i]) == float:135                            comp12cta[i] = False136                            total_messages -= 1137                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsAnswer)[i]) == float:138                            comp12isans[i] = False139                            total_messages -= 1140                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsQuestion)[i]) == float:141                            comp12isq[i] = False142                            total_messages -= 1143                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i]) == float:144                            comp12emp[i] = False145                            total_messages -= 1146                    total_agreement += sum([sum(x) * multiplier12 for x in [comp12askemp, comp12cta, comp12isans, comp12isq, comp12emp]])147                    total_messages += sum([x.__len__() for x in [comp12askemp, comp12cta, comp12isans, comp12isq, comp12emp]])148                if not annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0] in removedAnnotators \149                        and type(annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0]) == str:150                    comp13emp = annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy == \151                                annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy152                    comp13askemp = annotationDataset.groupby('thread').get_group(thread).annotator1AskEmpathy == \153                                   annotationDataset.groupby('thread').get_group(thread).annotator3AskEmpathy154                    comp13cta = annotationDataset.groupby('thread').get_group(thread).annotator1CallToAction == \155                                annotationDataset.groupby('thread').get_group(thread).annotator3CallToAction156                    comp13isans = annotationDataset.groupby('thread').get_group(thread).annotator1IsAnswer == \157                                  annotationDataset.groupby('thread').get_group(thread).annotator3IsAnswer158                    comp13isq = annotationDataset.groupby('thread').get_group(thread).annotator1IsQuestion == \159                                annotationDataset.groupby('thread').get_group(thread).annotator3IsQuestion160                    # comp13 = annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy == \161                    # annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy162                    multiplier13 = scoredict[annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0]]163                    for i, _ in enumerate(comp13emp):164                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1AskEmpathy)[i]) == float:165                            comp13askemp[i] = False  # don't count nan as agreeing166                            total_messages -= 1167                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1CallToAction)[i]) == float:168                            comp13cta[i] = False169                            total_messages -= 1170                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsAnswer)[i]) == float:171                            comp13isans[i] = False172                            total_messages -= 1173                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsQuestion)[i]) == float:174                            comp13isq[i] = False175                            total_messages -= 1176                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i]) == float:177                            comp13emp[i] = False178                            total_messages -= 1179                    total_agreement += sum([sum(x) * multiplier13 for x in [comp13askemp, comp13cta, comp13isans, comp13isq, comp13emp]])180                    total_messages += sum([x.__len__() for x in [comp13askemp, comp13cta, comp13isans, comp13isq, comp13emp]])181            for thread in annot2threads:182                if not annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0] in removedAnnotators \183                        and type(annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0]) == str:184                    comp21emp = annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy == \185                                annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy186                    comp21askemp = annotationDataset.groupby('thread').get_group(thread).annotator2AskEmpathy == \187                                   annotationDataset.groupby('thread').get_group(thread).annotator1AskEmpathy188                    comp21cta = annotationDataset.groupby('thread').get_group(thread).annotator2CallToAction == \189                                annotationDataset.groupby('thread').get_group(thread).annotator1CallToAction190                    comp21isans = annotationDataset.groupby('thread').get_group(thread).annotator2IsAnswer == \191                                  annotationDataset.groupby('thread').get_group(thread).annotator1IsAnswer192                    comp21isq = annotationDataset.groupby('thread').get_group(thread).annotator2IsQuestion == \193                                annotationDataset.groupby('thread').get_group(thread).annotator1IsQuestion194                    # comp21 = annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy == annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy195                    multiplier21 = scoredict[annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0]]196                    for i, _ in enumerate(comp21emp):197                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2AskEmpathy)[i]) == float:198                            comp21askemp[i] = False  # don't count nan as agreeing199                            total_messages -= 1200                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2CallToAction)[i]) == float:201                            comp21cta[i] = False202                            total_messages -= 1203                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsAnswer)[i]) == float:204                            comp21isans[i] = False205                            total_messages -= 1206                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsQuestion)[i]) == float:207                            comp21isq[i] = False208                            total_messages -= 1209                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i]) == float:210                            comp21emp[i] = False211                            total_messages -= 1212                            # comp21[i] = False213                    total_agreement += sum([sum(x) * multiplier21 for x in [comp21askemp, comp21cta, comp21isans, comp21isq, comp21emp]])214                    total_messages += sum([x.__len__() for x in [comp21askemp, comp21cta, comp21isans, comp21isq, comp21emp]])215                if not annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0] in removedAnnotators \216                        and type(annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0]) == str:217                    comp23emp = annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy == \218                                annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy219                    comp23askemp = annotationDataset.groupby('thread').get_group(thread).annotator2AskEmpathy == \220                                   annotationDataset.groupby('thread').get_group(thread).annotator3AskEmpathy221                    comp23cta = annotationDataset.groupby('thread').get_group(thread).annotator2CallToAction == \222                                annotationDataset.groupby('thread').get_group(thread).annotator3CallToAction223                    comp23isans = annotationDataset.groupby('thread').get_group(thread).annotator2IsAnswer == \224                                  annotationDataset.groupby('thread').get_group(thread).annotator3IsAnswer225                    comp23isq = annotationDataset.groupby('thread').get_group(thread).annotator2IsQuestion == \226                                annotationDataset.groupby('thread').get_group(thread).annotator3IsQuestion227                    # comp23 = annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy == annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy228                    multiplier23 = scoredict[annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0]]229                    for i, _ in enumerate(comp23emp):230                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2AskEmpathy)[i]) == float:231                            comp23askemp[i] = False  # don't count nan as agreeing232                            total_messages -= 1233                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2CallToAction)[i]) == float:234                            comp23cta[i] = False235                            total_messages -= 1236                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsAnswer)[i]) == float:237                            comp23isans[i] = False238                            total_messages -= 1239                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsQuestion)[i]) == float:240                            comp23isq[i] = False241                            total_messages -= 1242                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i]) == float:243                            comp23emp[i] = False244                            total_messages -= 1245                    total_agreement += sum([sum(x) * multiplier23 for x in [comp23askemp, comp23cta, comp23isans, comp23isq, comp23emp]])246                    total_messages += sum([x.__len__() for x in [comp23askemp, comp23cta, comp23isans, comp23isq, comp23emp]])247            for thread in annot3threads:248                if not annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0] in removedAnnotators \249                        and type(annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0]) == str:250                    comp31emp = annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy == \251                                annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy252                    comp31askemp = annotationDataset.groupby('thread').get_group(thread).annotator3AskEmpathy == \253                                   annotationDataset.groupby('thread').get_group(thread).annotator1AskEmpathy254                    comp31cta = annotationDataset.groupby('thread').get_group(thread).annotator3CallToAction == \255                                annotationDataset.groupby('thread').get_group(thread).annotator1CallToAction256                    comp31isans = annotationDataset.groupby('thread').get_group(thread).annotator3IsAnswer == \257                                  annotationDataset.groupby('thread').get_group(thread).annotator1IsAnswer258                    comp31isq = annotationDataset.groupby('thread').get_group(thread).annotator3IsQuestion == \259                                annotationDataset.groupby('thread').get_group(thread).annotator1IsQuestion260                    # comp31 = annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy == annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy261                    multiplier31 = scoredict[annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0]]262                    for i, _ in enumerate(comp31emp):263                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3AskEmpathy)[i]) == float:264                            comp31askemp[i] = False  # don't count nan as agreeing265                            total_messages -= 1266                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3CallToAction)[i]) == float:267                            comp31cta[i] = False268                            total_messages -= 1269                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsAnswer)[i]) == float:270                            comp31isans[i] = False271                            total_messages -= 1272                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsQuestion)[i]) == float:273                            comp31isq[i] = False274                            total_messages -= 1275                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i]) == float:276                            comp31emp[i] = False277                            total_messages -= 1278                            # comp31[i] = False279                    total_agreement += sum([sum(x) * multiplier31 for x in [comp31askemp, comp31cta, comp31isans, comp31isq, comp31emp]])280                    total_messages += sum([x.__len__() for x in [comp31askemp, comp31cta, comp31isans, comp31isq, comp31emp]])281                if not annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0] in removedAnnotators \282                        and type(annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0]) == str:283                    comp32emp = annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy == \284                                annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy285                    comp32askemp = annotationDataset.groupby('thread').get_group(thread).annotator3AskEmpathy == \286                                   annotationDataset.groupby('thread').get_group(thread).annotator2AskEmpathy287                    comp32cta = annotationDataset.groupby('thread').get_group(thread).annotator3CallToAction == \288                                annotationDataset.groupby('thread').get_group(thread).annotator2CallToAction289                    comp32isans = annotationDataset.groupby('thread').get_group(thread).annotator3IsAnswer == \290                                  annotationDataset.groupby('thread').get_group(thread).annotator2IsAnswer291                    comp32isq = annotationDataset.groupby('thread').get_group(thread).annotator3IsQuestion == \292                                annotationDataset.groupby('thread').get_group(thread).annotator2IsQuestion293                    # comp32 = annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy == annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy294                    multiplier32 = scoredict[annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0]]295                    for i, _ in enumerate(comp32emp):296                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3AskEmpathy)[i]) == float:297                            comp32askemp[i] = False  # don't count nan as agreeing298                            total_messages -= 1299                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3CallToAction)[i]) == float:300                            comp32cta[i] = False301                            total_messages -= 1302                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsAnswer)[i]) == float:303                            comp32isans[i] = False304                            total_messages -= 1305                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsQuestion)[i]) == float:306                            comp32isq[i] = False307                            total_messages -= 1308                        if type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i]) == float:309                            comp32emp[i] = False310                            total_messages -= 1311                    total_agreement += sum([sum(x) * multiplier32 for x in [comp32askemp, comp32cta, comp32isans, comp32isq, comp32emp]])312                    total_messages += sum([x.__len__() for x in [comp32askemp, comp32cta, comp32isans, comp32isq, comp32emp]])313            if total_messages == 0:314                agreement_factor = scoredict[annotatorname]315                print('annotator {} has no co annotators left!'.format(annotatorname))316            else:317                agreement_factor =(total_agreement/total_messages)318            with open('data\\agreementscore_with_nan_correction_6.csv', 'a') as file:319                writer = csv.writer(file)320                writer.writerow([iteration, annotatorname, agreement_factor])321            nextiterationscoredict[annotatorname] = 2* agreement_factor322            print(nextiterationscoredict[annotatorname])test_core.py
Source:test_core.py  
...66def test_no_mags():67    rat = '1'68    for cue in ['light', 'sound']:69        for trial in [1, 2, 3, 4]:70            this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).71                       groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])72            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))73            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))74            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))75            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))76def test_all_mags():77    rat = '2'78    for cue in ['light', 'sound']:79        for trial in [1, 2, 3, 4]:80            this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).81                       groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])82            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 10.0))83            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))84            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))85            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))86def test_sound_only():87    rat = '3'88    cue = 'sound'89    for trial in [1, 2, 3, 4]:90        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).91                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])92        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 10.0))93        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))94        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))95        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))96    cue = 'light'97    for trial in [1, 2, 3, 4]:98        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).99                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])100        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))101        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))102        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))103        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))104def test_light_only():105    rat = '4'106    cue = 'sound'107    for trial in [1, 2, 3, 4]:108        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).109                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])110        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))111        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))112        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))113        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))114    cue = 'light'115    for trial in [1, 2, 3, 4]:116        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).117                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])118        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 10.0))119        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))120        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))121        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))122def test_rewarded_sound():123    rat = '5'124    cue = 'light'125    for trial in [1, 2, 3, 4]:126        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).127                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])128        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))129        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))130        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))131        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))132    cue = 'sound'133    for trial in [2, 3]:134        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).135                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])136        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))137        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))138        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))139        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))140    for trial in [1, 4]:141        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).142                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])143        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 10.0))144        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))145        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))146        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))147def test_iti_only():148    rat = '6'149    for cue in ['light', 'sound']:150        for trial in [1, 2, 3, 4]:151            this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).152                       groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])153            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))154            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))155            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))156            assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))157def test_half_light():158    rat = '7'159    cue = 'sound'160    for trial in [1, 2, 3, 4]:161        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).162                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])163        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))164        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))165        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))166        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))167    cue = 'light'168    for trial in [1, 4]:169        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).170                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])171        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 5.0))172        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))173        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 5.0))174        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))175    for trial in [2, 3]:176        this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).177                   groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])178        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 5.0))179        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))180        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))181        assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))182def test_complex():183    rat = '8'184    trial = 1185    cue = 'light'186    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).187               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])188    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 1.0))189    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))190    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 9.0))191    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))192    cue = 'sound'193    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).194               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])195    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 1.98))196    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))197    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))198    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))199    trial = 2200    cue = 'light'201    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).202               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])203    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))204    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))205    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))206    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))207    cue = 'sound'208    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).209               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])210    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 10.0))211    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))212    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))213    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))214    trial = 3215    cue = 'light'216    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).217               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])218    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 2.5))219    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 2.0))220    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))221    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))222    cue = 'sound'223    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).224               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])225    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 10.0))226    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 1.0))227    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 0.0))228    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 1.0))229    trial = 4230    cue = 'light'231    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).232               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])233    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))234    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))235    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))236    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'AtLeastOne']['value']), 0.0))237    cue = 'sound'238    this_df = (df.groupby(['rat']).get_group(rat).groupby(['cue_type']).get_group(cue).239               groupby(['trial_type']).get_group(str(trial))[['measure', 'value']])240    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Duration']['value']), 0.0))241    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Count']['value']), 0.0))242    assert (np.allclose(np.mean(this_df[this_df['measure'] == 'Latency']['value']), 10.0))...manual_annotator_compare.py
Source:manual_annotator_compare.py  
...14        total_agreement = 015        total_messages = 016        skipped = 017        try:18            annot1threads = annotationDataset.groupby("annotator1Name").get_group(annotatorname).thread.unique()19        except:20            annot1threads = []21        try:22            annot2threads = annotationDataset.groupby("annotator2Name").get_group(annotatorname).thread.unique()23        except:24            annot2threads = []25        try:26            annot3threads = annotationDataset.groupby("annotator3Name").get_group(annotatorname).thread.unique()27        except:28            annot3threads =[]29        for thread in annot1threads:30            if annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique().__len__()>0 and \31                    annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique().__len__()>0:32                if not annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0] in removedAnnotators and \33                    not annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0] in removedAnnotators:34                    otherscompEmph = annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy == \35                                     annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy36                    annotcompEmph = annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy == \37                                    [x if list(otherscompEmph)[i] else list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i] for i, x in enumerate(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)]38                    for i, text in enumerate(annotationDataset.groupby('thread').get_group(thread).text):39                        if not type(list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i]) == float:40                            if agreemode:41                                if not list(annotcompEmph)[i]:42                                    print(text, annotatorname,43                                          list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i])44                                    if list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i] == True:45                                        print(list(annotationDataset.groupby('thread').get_group(thread).annotator1EmpathyType)[46                                                  i],47                                              list(annotationDataset.groupby('thread').get_group(48                                                  thread).annotator1EmpathyValence)[i])49                                    # else:50                                    #     continue51                                    inp = input('1 to agree, 0 to disagree, 2 to switch agreemode')52                                    if int(inp) == 2:53                                        agreemode = not agreemode54                                        continue55                                    total_messages += 156                                    total_agreement += int(inp)57                                else:58                                    skipped+=159                            # if not list(annotcompEmph)[i]:60                            else:61                                print(text, annotatorname, list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i])62                                if list(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)[i] == True:63                                    print(list(annotationDataset.groupby('thread').get_group(thread).annotator1EmpathyType)[i],64                                          list(annotationDataset.groupby('thread').get_group(thread).annotator1EmpathyValence)[i])65                                else:66                                    continue67                                inp = input('1 to agree, 0 to disagree, 2 to switch agreemode')68                                if int(inp) == 2:69                                    agreemode = not agreemode70                                    continue71                                total_messages += 172                                total_agreement += int(inp)73                                # else:74                                #     skipped+=175        print("intermediary result: {} agreed out of {} for annotator {}".format(total_agreement, total_messages,76                                                                                 annotatorname))77        for thread in annot2threads:78            if annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique().__len__()>0 and \79                    annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique().__len__()>0:80                if not annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0] in removedAnnotators and \81                    not annotationDataset.groupby('thread').get_group(thread).annotator3Name.unique()[0] in removedAnnotators:82                    otherscompEmph = annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy == annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy83                    annotcompEmph = annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy == \84                                    [x if list(otherscompEmph)[i] else list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i] for i, x in enumerate(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)]85                    for i, text in enumerate(annotationDataset.groupby('thread').get_group(thread).text):86                        if not type(list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i]) == float:87                            if agreemode:88                                if not list(annotcompEmph)[i]:89                                    print(text, annotatorname, list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i])90                                    if list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i] == True:91                                        print(list(annotationDataset.groupby('thread').get_group(thread).annotator2EmpathyType)[i],92                                              list(annotationDataset.groupby('thread').get_group(thread).annotator2EmpathyValence)[i])93                                    # else:94                                    #     continue95                                    inp = input('1 to agree, 0 to disagree, 2 to switch agreemode')96                                    if int(inp) == 2:97                                        agreemode = not agreemode98                                        continue99                                    total_messages += 1100                                    total_agreement += int(inp)101                                else:102                                    skipped+=1103                            else:104                                print(text, annotatorname,105                                      list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i])106                                if list(annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy)[i] == True:107                                    print(list(annotationDataset.groupby('thread').get_group(thread).annotator2EmpathyType)[108                                              i],109                                          list(annotationDataset.groupby('thread').get_group(110                                              thread).annotator2EmpathyValence)[i])111                                else:112                                    continue113                                inp = input('1 to agree, 0 to disagree, 2 to switch agreemode')114                                if int(inp) == 2:115                                    agreemode = not agreemode116                                    continue117                                total_messages += 1118                                total_agreement += int(inp)119        print("intermediary result: {} agreed out of {} for annotator {}".format(total_agreement, total_messages, annotatorname))120        for thread in annot3threads:121            if annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique().__len__()>0 and \122                    annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique().__len__()>0:123                if not annotationDataset.groupby('thread').get_group(thread).annotator1Name.unique()[0] in removedAnnotators and \124                    not annotationDataset.groupby('thread').get_group(thread).annotator2Name.unique()[0] in removedAnnotators:125                    otherscompEmph = annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy == annotationDataset.groupby('thread').get_group(thread).annotator2IsEmpathy126                    annotcompEmph = annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy == \127                                    [x if list(otherscompEmph)[i] else list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i] for i, x in enumerate(annotationDataset.groupby('thread').get_group(thread).annotator1IsEmpathy)]128                    for i, text in enumerate(annotationDataset.groupby('thread').get_group(thread).text):129                        if not type(list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i]) == float:130                            if agreemode:131                                if not list(annotcompEmph)[i]:132                                    print(text, annotatorname,  list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i])133                                    if list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i] == True:134                                        print(list(annotationDataset.groupby('thread').get_group(thread).annotator3EmpathyType)[i],135                                              list(annotationDataset.groupby('thread').get_group(thread).annotator3EmpathyValence)[i])136                                    # else:137                                    #     continue138                                    inp = input('1 to agree, 0 to disagree, 2 to switch agreemode')139                                    if int(inp) == 2:140                                        agreemode = not agreemode141                                        continue142                                    total_messages += 1143                                    total_agreement += int(inp)144                                else:145                                    skipped += 1146                            else:147                                print(text, annotatorname,148                                      list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i])149                                if list(annotationDataset.groupby('thread').get_group(thread).annotator3IsEmpathy)[i] == True:150                                    print(list(annotationDataset.groupby('thread').get_group(thread).annotator3EmpathyType)[151                                              i],152                                          list(annotationDataset.groupby('thread').get_group(153                                              thread).annotator3EmpathyValence)[i])154                                else:155                                    continue156                                inp = input('1 to agree, 0 to disagree, 2 to switch agreemode')157                                if int(inp) == 2:158                                    agreemode = not agreemode159                                    continue160                                total_messages += 1161                                total_agreement += int(inp)162        print("{} agreed out of {} for annotator {}".format(total_agreement,total_messages, annotatorname))163        print("{} skipped".format(skipped))164        with open('manual_annotator_compare.csv', 'a') as file:165            writer = csv.writer(file)166            writer.writerow([annotatorname,total_agreement,total_messages])Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
