Best Python code snippet using molecule_python
config.py
Source:config.py  
1from configparser import ConfigParser2import os3class myconf(ConfigParser):4    def __init__(self, defaults=None):5        ConfigParser.__init__(self, defaults=defaults)6    def optionxform(self, optionstr):7        return optionstr8class Configurable(myconf):9    def __init__(self, config_file):10        config = myconf()11        config.read(config_file)12        self._config = config13        print('Loaded config file sucessfully.')14        for section in config.sections():15            for k, v in config.items(section):16                print(k, ":", v)17        # if not os.path.isdir(self.save_dir):18        #     os.mkdir(self.save_dir)19        config.write(open(config_file, 'w'))20    # Data21    @property22    def word_Embedding(self):23        return self._config.getboolean('Data', 'word_Embedding')24    @property25    def freq_1_unk(self):26        return self._config.getboolean('Data', 'freq_1_unk')27    @property28    def word_Embedding_Path(self):29        return self._config.get('Data', 'word_Embedding_Path')30    @property31    def datafile_path(self):32        return self._config.get('Data', 'datafile_path')33    @property34    def name_trainfile(self):35        return self._config.get('Data', 'name_trainfile')36    @property37    def name_devfile(self):38        return self._config.get('Data', 'name_devfile')39    @property40    def name_testfile(self):41        return self._config.get('Data', 'name_testfile')42    @property43    def min_freq(self):44        return self._config.getint('Data', 'min_freq')45    @property46    def word_data(self):47        return self._config.getboolean('Data', 'word_data')48    @property49    def char_data(self):50        return self._config.getboolean('Data', 'char_data')51    @property52    def shuffle(self):53        return self._config.getboolean('Data', 'shuffle')54    @property55    def epochs_shuffle(self):56        return self._config.getboolean('Data', 'epochs_shuffle')57    @property58    def FIVE_CLASS_TASK(self):59        return self._config.getboolean('Data', 'FIVE_CLASS_TASK')    \60    @property61    def TWO_CLASS_TASK(self):62        return self._config.getboolean('Data', 'TWO_CLASS_TASK')63    # Save64    @property65    def snapshot(self):66        value = self._config.get('Save', 'snapshot')67        if value == "None" or value == "none":68            return None69        else:70            return value71    @property72    def predict(self):73        value = self._config.get('Save', 'predict')74        if value == "None" or value == "none":75            return None76        else:77            return value78    @property79    def test(self):80        return self._config.getboolean('Save', 'test')81    @property82    def save_dir(self):83        return self._config.get('Save', 'save_dir')84    @save_dir.setter85    def save_dir(self, value):86        self._config.set('Save', 'save_dir', str(value))87    @property88    def rm_model(self):89        return self._config.getboolean('Save', 'rm_model')90    # Model91    @property92    def static(self):93        return self._config.getboolean("Model", "static")94    @property95    def wide_conv(self):96        return self._config.getboolean("Model", "wide_conv")97    @property98    def CNN(self):99        return self._config.getboolean("Model", "CNN")100    @property101    def HighWay_CNN(self):102        return self._config.getboolean("Model", "HighWay_CNN")103    @property104    def CNN_MUI(self):105        return self._config.getboolean("Model", "CNN_MUI")106    @property107    def DEEP_CNN(self):108        return self._config.getboolean("Model", "DEEP_CNN")109    @property110    def DEEP_CNN_MUI(self):111        return self._config.getboolean("Model", "DEEP_CNN_MUI")112    @property113    def LSTM(self):114        return self._config.getboolean("Model", "LSTM")115    @property116    def GRU(self):117        return self._config.getboolean("Model", "GRU")118    @property119    def BiLSTM(self):120        return self._config.getboolean("Model", "BiLSTM")121    @property122    def BiLSTM_1(self):123        return self._config.getboolean("Model", "BiLSTM_1")124    @property125    def HighWay_BiLSTM_1(self):126        return self._config.getboolean("Model", "HighWay_BiLSTM_1")127    @property128    def CNN_LSTM(self):129        return self._config.getboolean("Model", "CNN_LSTM")130    @property131    def CNN_BiLSTM(self):132        return self._config.getboolean("Model", "CNN_BiLSTM")133    @property134    def CLSTM(self):135        return self._config.getboolean("Model", "CLSTM")136    @property137    def CBiLSTM(self):138        return self._config.getboolean("Model", "CBiLSTM")139    @property140    def CGRU(self):141        return self._config.getboolean("Model", "CGRU")142    @property143    def BiGRU(self):144        return self._config.getboolean("Model", "BiGRU")145    @property146    def CNN_BiGRU(self):147        return self._config.getboolean("Model", "CNN_BiGRU")148    @property149    def embed_dim(self):150        return self._config.getint("Model", "embed_dim")151    @property152    def lstm_hidden_dim(self):153        return self._config.getint("Model", "lstm_hidden_dim")154    @property155    def lstm_num_layers(self):156        return self._config.getint("Model", "lstm_num_layers")157    @property158    def batch_normalizations(self):159        return self._config.getboolean("Model", "batch_normalizations")160    @property161    def bath_norm_momentum(self):162        return self._config.getfloat("Model", "bath_norm_momentum")163    @property164    def batch_norm_affine(self):165        return self._config.getboolean("Model", "batch_norm_affine")166    @property167    def dropout(self):168        return self._config.getfloat("Model", "dropout")169    @property170    def dropout_embed(self):171        return self._config.getfloat("Model", "dropout_embed")172    @property173    def max_norm(self):174        value = self._config.get("Model", "max_norm")175        if value == "None" or value == "none":176            return None177        else:178            return value179    @property180    def clip_max_norm(self):181        return self._config.getint("Model", "clip_max_norm")182    @property183    def kernel_num(self):184        return self._config.getint("Model", "kernel_num")185    @property186    def kernel_sizes(self):187        value = self._config.get("Model", "kernel_sizes")188        # print(list(value))189        value = [int(k) for k in list(value) if k != ","]190        return value191    @kernel_sizes.setter192    def kernel_sizes(self, value):193        self._config.set("Model", "kernel_sizes", str(value))194    @property195    def init_weight(self):196        return self._config.getboolean("Model", "init_weight")197    @property198    def init_weight_value(self):199        return self._config.getfloat("Model", "init_weight_value")200    # Optimizer201    @property202    def learning_rate(self):203        return self._config.getfloat("Optimizer", "learning_rate")204    @property205    def Adam(self):206        return self._config.getboolean("Optimizer", "Adam")207    @property208    def SGD(self):209        return self._config.getboolean("Optimizer", "SGD")210    @property211    def Adadelta(self):212        return self._config.getboolean("Optimizer", "Adadelta")213    @property214    def momentum_value(self):215        return self._config.getfloat("Optimizer", "optim_momentum_value")216    @property217    def weight_decay(self):218        return self._config.getfloat("Optimizer", "weight_decay")219    # Train220    @property221    def num_threads(self):222        return self._config.getint("Train", "num_threads")223    @property224    def device(self):225        return self._config.getint("Train", "device")226    @property227    def cuda(self):228        return self._config.getboolean("Train", "cuda")229    @property230    def epochs(self):231        return self._config.getint("Train", "epochs")232    @property233    def batch_size(self):234        return self._config.getint("Train", "batch_size")235    @property236    def log_interval(self):237        return self._config.getint("Train", "log_interval")238    @property239    def test_interval(self):240        return self._config.getint("Train", "test_interval")241    @property242    def save_interval(self):...configdict_test.py
Source:configdict_test.py  
1# Copyright 2018 The TensorFlow Authors.2#3# Licensed under the Apache License, Version 2.0 (the "License");4# you may not use this file except in compliance with the License.5# You may obtain a copy of the License at6#7#     http://www.apache.org/licenses/LICENSE-2.08#9# Unless required by applicable law or agreed to in writing, software10# distributed under the License is distributed on an "AS IS" BASIS,11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.12# See the License for the specific language governing permissions and13# limitations under the License.14"""Tests for config_util.configdict."""15from __future__ import absolute_import16from __future__ import division17from __future__ import print_function18from absl.testing import absltest19from tf_util import configdict20class ConfigDictTest(absltest.TestCase):21  def setUp(self):22    super(ConfigDictTest, self).setUp()23    self._config = configdict.ConfigDict({24        "int": 1,25        "float": 2.0,26        "bool": True,27        "str": "hello",28        "nested": {29            "int": 3,30        },31        "double_nested": {32            "a": {33                "int": 3,34            },35            "b": {36                "float": 4.0,37            }38        }39    })40  def testAccess(self):41    # Simple types.42    self.assertEqual(1, self._config.int)43    self.assertEqual(1, self._config["int"])44    self.assertEqual(2.0, self._config.float)45    self.assertEqual(2.0, self._config["float"])46    self.assertTrue(self._config.bool)47    self.assertTrue(self._config["bool"])48    self.assertEqual("hello", self._config.str)49    self.assertEqual("hello", self._config["str"])50    # Single nested config.51    self.assertEqual(3, self._config.nested.int)52    self.assertEqual(3, self._config["nested"].int)53    self.assertEqual(3, self._config.nested["int"])54    self.assertEqual(3, self._config["nested"]["int"])55    # Double nested config.56    self.assertEqual(3, self._config["double_nested"].a.int)57    self.assertEqual(3, self._config["double_nested"]["a"].int)58    self.assertEqual(3, self._config["double_nested"].a["int"])59    self.assertEqual(3, self._config["double_nested"]["a"]["int"])60    self.assertEqual(4.0, self._config.double_nested.b.float)61    self.assertEqual(4.0, self._config.double_nested["b"].float)62    self.assertEqual(4.0, self._config.double_nested.b["float"])63    self.assertEqual(4.0, self._config.double_nested["b"]["float"])64    # Nonexistent parameters.65    with self.assertRaises(AttributeError):66      _ = self._config.nonexistent67    with self.assertRaises(KeyError):68      _ = self._config["nonexistent"]69  def testSetAttribut(self):70    # Overwrite existing simple type.71    self._config.int = 4072    self.assertEqual(40, self._config.int)73    # Overwrite existing nested simple type.74    self._config.nested.int = 4075    self.assertEqual(40, self._config.nested.int)76    # Overwrite existing nested config.77    self._config.double_nested.a = {"float": 50.0}78    self.assertIsInstance(self._config.double_nested.a, configdict.ConfigDict)79    self.assertEqual(50.0, self._config.double_nested.a.float)80    self.assertNotIn("int", self._config.double_nested.a)81    # Set new simple type.82    self._config.int_2 = 1083    self.assertEqual(10, self._config.int_2)84    # Set new nested simple type.85    self._config.nested.int_2 = 2086    self.assertEqual(20, self._config.nested.int_2)87    # Set new nested config.88    self._config.double_nested.c = {"int": 30}89    self.assertIsInstance(self._config.double_nested.c, configdict.ConfigDict)90    self.assertEqual(30, self._config.double_nested.c.int)91  def testSetItem(self):92    # Overwrite existing simple type.93    self._config["int"] = 4094    self.assertEqual(40, self._config.int)95    # Overwrite existing nested simple type.96    self._config["nested"].int = 4097    self.assertEqual(40, self._config.nested.int)98    self._config.nested["int"] = 5099    self.assertEqual(50, self._config.nested.int)100    # Overwrite existing nested config.101    self._config.double_nested["a"] = {"float": 50.0}102    self.assertIsInstance(self._config.double_nested.a, configdict.ConfigDict)103    self.assertEqual(50.0, self._config.double_nested.a.float)104    self.assertNotIn("int", self._config.double_nested.a)105    # Set new simple type.106    self._config["int_2"] = 10107    self.assertEqual(10, self._config.int_2)108    # Set new nested simple type.109    self._config.nested["int_2"] = 20110    self.assertEqual(20, self._config.nested.int_2)111    self._config.nested["int_3"] = 30112    self.assertEqual(30, self._config.nested.int_3)113    # Set new nested config.114    self._config.double_nested["c"] = {"int": 30}115    self.assertIsInstance(self._config.double_nested.c, configdict.ConfigDict)116    self.assertEqual(30, self._config.double_nested.c.int)117  def testDelete(self):118    # Simple types.119    self.assertEqual(1, self._config.int)120    del self._config.int121    with self.assertRaises(AttributeError):122      _ = self._config.int123    with self.assertRaises(KeyError):124      _ = self._config["int"]125    self.assertEqual(2.0, self._config["float"])126    del self._config["float"]127    with self.assertRaises(AttributeError):128      _ = self._config.float129    with self.assertRaises(KeyError):130      _ = self._config["float"]131    # Nested config.132    self.assertEqual(3, self._config.nested.int)133    del self._config.nested134    with self.assertRaises(AttributeError):135      _ = self._config.nested136    with self.assertRaises(KeyError):137      _ = self._config["nested"]138if __name__ == "__main__":...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
