Best Python code snippet using molecule_python
test_sparse_gpr.py
Source:test_sparse_gpr.py  
...30        else:31            outputs = outputs[:, np.newaxis] if outputs.ndim == 1 else outputs32        return outputs33    return wrapped34def _get_matrix(name):35    return np.loadtxt(os.path.join(_data_dir, name + ".dat"))36class _InducingData(object):37    """38    A few pieces in common with these models39    """40    @staticmethod41    @atleast_col42    def _xy():43        return _get_matrix("x"), _get_matrix("y")44    @staticmethod45    @atleast_col46    def _x_test():47        return _get_matrix("x_test")48    @staticmethod49    @atleast_col50    def _z():51        return _get_matrix("z")52class TestVFE(_InducingData):53    def test_init(self):54        x, y = _InducingData._xy()55        kernel = Matern32(x.shape[1], ARD=True)56        VFE(x, y, kernel)57        VFE(x, y, kernel, inducing_points=_InducingData._z())58        # TODO mean59    def test_compute_loss(self):60        x, y = _InducingData._xy()61        z = _InducingData._z()62        kernel = Matern32(1)63        kernel.length_scales.data = torch.zeros(1, dtype=torch_dtype)64        kernel.variance.data = torch.zeros(1, dtype=torch_dtype)65        likelihood = likelihoods.Gaussian(variance=1.0)66        model = VFE(67            x,68            y,69            kernel,70            inducing_points=z,71            likelihood=likelihood,72            mean_function=mean_functions.Zero(1),73        )74        loss = model.loss()75        assert isinstance(loss, torch.Tensor)76        assert loss.ndimension() == 077        # Computed while I trust the result.78        assert loss.item() == pytest.approx(8.842242323920674)79        # Test ability to specify x and y80        loss_xy = model.loss(x=TensorType(x), y=TensorType(y))81        assert isinstance(loss_xy, torch.Tensor)82        assert loss_xy.item() == loss.item()83        with pytest.raises(ValueError):84            # Size mismatch85            model.loss(x=TensorType(x[: x.shape[0] // 2]))86    @needs_cuda87    def test_compute_loss_cuda(self):88        model = self._get_model()89        model.cuda()90        loss = model.loss()91        assert loss.is_cuda92    def test_predict(self):93        """94        Just the ._predict() method95        """96        x, y = _InducingData._xy()97        z = _InducingData._z()98        kernel = Matern32(1)99        kernel.length_scales.data = torch.zeros(1, dtype=torch_dtype)100        kernel.variance.data = torch.zeros(1, dtype=torch_dtype)101        likelihood = likelihoods.Gaussian(variance=1.0)102        model = VFE(103            x,104            y,105            kernel,106            inducing_points=z,107            likelihood=likelihood,108            mean_function=mean_functions.Zero(1),109        )110        x_test = torch.Tensor(_InducingData._x_test())111        mu, s = TestVFE._y_pred()112        gaussian_predictions(model, x_test, mu, s)113    @needs_cuda114    def test_predict_cuda(self):115        model = self._get_model()116        model.cuda()117        x_test = torch.randn(4, model.input_dimension, dtype=torch_dtype).cuda()118        for t in model._predict(x_test):119            assert t.is_cuda120    @staticmethod121    @atleast_col122    def _y_pred():123        return _get_matrix("vfe_y_mean"), _get_matrix("vfe_y_cov")124    @staticmethod125    def _get_model():126        x, y = _InducingData._xy()127        z = _InducingData._z()128        kernel = Matern32(1)129        kernel.length_scales.data = torch.zeros(1, dtype=torch_dtype)130        kernel.variance.data = torch.zeros(1, dtype=torch_dtype)131        likelihood = likelihoods.Gaussian(variance=1.0)132        model = VFE(133            x,134            y,135            kernel,136            inducing_points=z,137            likelihood=likelihood,138            mean_function=mean_functions.Zero(1),139        )140        return model141class TestSVGP(_InducingData):142    def test_init(self):143        x, y = _InducingData._xy()144        kernel = Matern32(x.shape[1], ARD=True)145        SVGP(x, y, kernel)146        SVGP(x, y, kernel, inducing_points=_InducingData._z())147        SVGP(x, y, kernel, mean_function=mean_functions.Constant(y.shape[1]))148        SVGP(149            x,150            y,151            kernel,152            mean_function=torch.nn.Linear(x.shape[1], y.shape[1], dtype=torch_dtype),153        )154    def test_compute_loss(self):155        x, y = _InducingData._xy()156        z = _InducingData._z()157        u_mu, u_l_s = TestSVGP._induced_outputs()158        kernel = Matern32(1)159        kernel.length_scales.data = torch.zeros(1, dtype=torch_dtype)160        kernel.variance.data = torch.zeros(1, dtype=torch_dtype)161        likelihood = likelihoods.Gaussian(variance=1.0)162        model = SVGP(163            x,164            y,165            kernel,166            inducing_points=z,167            likelihood=likelihood,168            mean_function=mean_functions.Zero(1),169        )170        model.induced_output_mean.data = TensorType(u_mu)171        model.induced_output_chol_cov.data = model.induced_output_chol_cov._transform.inv(172            TensorType(u_l_s)173        )174        loss = model.loss()175        assert isinstance(loss, torch.Tensor)176        assert loss.ndimension() == 0177        # Computed while I trust the result.178        assert loss.item() == pytest.approx(9.534628739243518)179        # Test ability to specify x and y180        loss_xy = model.loss(x=TensorType(x), y=TensorType(y))181        assert isinstance(loss_xy, torch.Tensor)182        assert loss_xy.item() == loss.item()183        with pytest.raises(ValueError):184            # Size mismatch185            model.loss(x=TensorType(x[: x.shape[0] // 2]), y=TensorType(y))186        model_minibatch = SVGP(x, y, kernel, batch_size=1)187        loss_mb = model_minibatch.loss()188        assert isinstance(loss_mb, torch.Tensor)189        assert loss_mb.ndimension() == 0190        model_full_mb = SVGP(191            x,192            y,193            kernel,194            inducing_points=z,195            likelihood=likelihood,196            mean_function=mean_functions.Zero(1),197            batch_size=x.shape[0],198        )199        model_full_mb.induced_output_mean.data = TensorType(u_mu)200        model_full_mb.induced_output_chol_cov.data = model_full_mb.induced_output_chol_cov._transform.inv(201            TensorType(u_l_s)202        )203        loss_full_mb = model_full_mb.loss()204        assert isinstance(loss_full_mb, torch.Tensor)205        assert loss_full_mb.ndimension() == 0206        assert loss_full_mb.item() == pytest.approx(loss.item())207        model.loss(model.X, model.Y)  # Just make sure it works!208    @needs_cuda209    def test_compute_loss_cuda(self):210        model = self._get_model()211        model.cuda()212        loss = model.loss()213        assert loss.is_cuda214    def test_predict(self):215        """216        Just the ._predict() method217        """218        x, y = _InducingData._xy()219        z = _InducingData._z()220        u_mu, u_l_s = TestSVGP._induced_outputs()221        kernel = Matern32(1)222        kernel.length_scales.data = torch.zeros(1, dtype=torch_dtype)223        kernel.variance.data = torch.zeros(1, dtype=torch_dtype)224        likelihood = likelihoods.Gaussian(variance=1.0)225        model = SVGP(226            x,227            y,228            kernel,229            inducing_points=z,230            likelihood=likelihood,231            mean_function=mean_functions.Zero(1),232        )233        model.induced_output_mean.data = TensorType(u_mu)234        model.induced_output_chol_cov.data = model.induced_output_chol_cov._transform.inv(235            TensorType(u_l_s)236        )237        x_test = TensorType(_InducingData._x_test())238        mu, s = TestSVGP._y_pred()239        gaussian_predictions(model, x_test, mu, s)240    @needs_cuda241    def test_predict_cuda(self):242        model = self._get_model()243        model.cuda()244        x_test = torch.randn(4, model.input_dimension, dtype=torch_dtype).cuda()245        for t in model._predict(x_test):246            assert t.is_cuda247    @staticmethod248    @atleast_col249    def _induced_outputs():250        return _get_matrix("q_mu"), _get_matrix("l_s")251    @staticmethod252    @atleast_col253    def _y_pred():254        return _get_matrix("svgp_y_mean"), _get_matrix("svgp_y_cov")255    @staticmethod256    def _get_model():257        x, y = _InducingData._xy()258        z = _InducingData._z()259        u_mu, u_l_s = TestSVGP._induced_outputs()260        kernel = Matern32(1)261        kernel.length_scales.data = torch.zeros(1, dtype=torch_dtype)262        kernel.variance.data = torch.zeros(1, dtype=torch_dtype)263        likelihood = likelihoods.Gaussian(variance=1.0)264        model = SVGP(265            x,266            y,267            kernel,268            inducing_points=z,...transforms.py
Source:transforms.py  
...24            return morphology.dilation(img, disk)25        else:26            return morphology.erosion(img, disk)27class LinearDeformation(Deformation):28    def _get_matrix(self, moments: ImageMoments, morph: ImageMorphology) -> np.ndarray:29        raise NotImplementedError30    def warp(self, xy: np.ndarray, morph: ImageMorphology) -> np.ndarray:31        moments = ImageMoments(morph.binary_image)32        centroid = np.array(moments.centroid)33        matrix = self._get_matrix(moments, morph)34        xy_ = (xy - centroid) @ matrix.T + centroid35        return xy_36class SetSlant(LinearDeformation):37    def __init__(self, target_slant_rad: float):38        self.target_shear = -np.tan(target_slant_rad)39    def _get_matrix(self, moments: ImageMoments, morph: ImageMorphology) -> np.ndarray:40        source_shear = moments.horizontal_shear41        delta = self.target_shear - source_shear42        return np.array([[1., -delta], [0., 1.]])43def _measure_width(morph: ImageMorphology, frac=.02, moments: ImageMoments = None):44    top_left, top_right = bounding_parallelogram(morph.hires_image,45                                                 frac=frac, moments=moments)[:2]46    return (top_right[0] - top_left[0]) / morph.scale47class SetWidth(LinearDeformation):48    _tolerance = 1.49    def __init__(self, target_width: float, validate=False):50        self.target_width = target_width51        self._validate = validate52    def _get_matrix(self, moments: ImageMoments, morph: ImageMorphology) -> np.ndarray:53        source_width = _measure_width(morph, moments=moments)54        factor = source_width / self.target_width55        shear = moments.horizontal_shear56        return np.array([[factor, shear * (1. - factor)], [0., 1.]])57    def __call__(self, morph: ImageMorphology) -> np.ndarray:58        pert_hires_image = super().__call__(morph)59        pert_image = morph.downscale(pert_hires_image)60        if self._validate:61            pert_morph = ImageMorphology(pert_image, threshold=morph.threshold, scale=morph.scale)62            width = _measure_width(pert_morph)63            if abs(width - self.target_width) > self._tolerance:64                print(f"!!! Incorrect width after transformation: {width:.1f}, "65                      f"expected {self.target_width:.1f}.")66                pert_hires_image = self(pert_morph)...__init__.py
Source:__init__.py  
1from qulacs_core import *2import qulacs.observable._get_matrix3Observable.get_matrix = \4    lambda obs: qulacs.observable._get_matrix._get_matrix(obs)5GeneralQuantumOperator.get_matrix = \...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
