Best Python code snippet using molotov_python
sparse_utils_test.py
Source:sparse_utils_test.py  
...21import numpy as np22from rigl import sparse_utils23import tensorflow as tf24class GetMaskRandomTest(tf.test.TestCase, parameterized.TestCase):25  def _setup_session(self):26    """Resets the graph and returns a fresh session."""27    tf.reset_default_graph()28    sess = tf.Session()29    return sess30  @parameterized.parameters(((30, 40), 0.5), ((1, 2, 1, 4), 0.8), ((3,), 0.1))31  def testMaskConnectionDeterminism(self, shape, sparsity):32    sess = self._setup_session()33    mask = tf.ones(shape)34    mask1 = sparse_utils.get_mask_random(mask, sparsity, tf.int32)35    mask2 = sparse_utils.get_mask_random(mask, sparsity, tf.int32)36    mask1_array, = sess.run([mask1])37    mask2_array, = sess.run([mask2])38    self.assertEqual(np.sum(mask1_array), np.sum(mask2_array))39  @parameterized.parameters(((30, 4), 0.5, 60), ((1, 2, 1, 4), 0.8, 1),40                            ((30,), 0.1, 27))41  def testMaskFraction(self, shape, sparsity, expected_ones):42    sess = self._setup_session()43    mask = tf.ones(shape)44    mask1 = sparse_utils.get_mask_random(mask, sparsity, tf.int32)45    mask1_array, = sess.run([mask1])46    self.assertEqual(np.sum(mask1_array), expected_ones)47  @parameterized.parameters(tf.int32, tf.float32, tf.int64, tf.float64)48  def testMaskDtype(self, dtype):49    _ = self._setup_session()50    mask = tf.ones((3, 2))51    mask1 = sparse_utils.get_mask_random(mask, 0.5, dtype)52    self.assertEqual(mask1.dtype, dtype)53class GetSparsitiesTest(tf.test.TestCase, parameterized.TestCase):54  def _setup_session(self):55    """Resets the graph and returns a fresh session."""56    tf.reset_default_graph()57    sess = tf.Session()58    return sess59  @parameterized.parameters(0., 0.4, 0.9)60  def testSparsityDictRandom(self, default_sparsity):61    _ = self._setup_session()62    all_masks = [tf.get_variable(shape=(2, 3), name='var1/mask'),63                 tf.get_variable(shape=(2, 3), name='var2/mask'),64                 tf.get_variable(shape=(1, 1, 3), name='var3/mask')]65    custom_sparsity = {'var1': 0.8}66    sparsities = sparse_utils.get_sparsities(67        all_masks, 'random', default_sparsity, custom_sparsity)68    self.assertEqual(sparsities[all_masks[0].name], 0.8)69    self.assertEqual(sparsities[all_masks[1].name], default_sparsity)70    self.assertEqual(sparsities[all_masks[2].name], default_sparsity)71  @parameterized.parameters(0.1, 0.4, 0.9)72  def testSparsityDictErdosRenyiCustom(self, default_sparsity):73    _ = self._setup_session()74    all_masks = [tf.get_variable(shape=(2, 4), name='var1/mask'),75                 tf.get_variable(shape=(2, 3), name='var2/mask'),76                 tf.get_variable(shape=(1, 1, 3), name='var3/mask')]77    custom_sparsity = {'var3': 0.8}78    sparsities = sparse_utils.get_sparsities(79        all_masks, 'erdos_renyi', default_sparsity, custom_sparsity)80    self.assertEqual(sparsities[all_masks[2].name], 0.8)81  @parameterized.parameters(0.1, 0.4, 0.9)82  def testSparsityDictErdosRenyiError(self, default_sparsity):83    _ = self._setup_session()84    all_masks = [tf.get_variable(shape=(2, 4), name='var1/mask'),85                 tf.get_variable(shape=(2, 3), name='var2/mask'),86                 tf.get_variable(shape=(1, 1, 3), name='var3/mask')]87    custom_sparsity = {'var3': 0.8}88    sparsities = sparse_utils.get_sparsities(89        all_masks, 'erdos_renyi', default_sparsity, custom_sparsity)90    self.assertEqual(sparsities[all_masks[2].name], 0.8)91  @parameterized.parameters(((2, 3), (2, 3), 0.5),92                            ((1, 1, 2, 3), (1, 1, 2, 3), 0.3),93                            ((8, 6), (4, 3), 0.7),94                            ((80, 4), (20, 20), 0.8),95                            ((2, 6), (2, 3), 0.8))96  def testSparsityDictErdosRenyiSparsitiesScale(97      self, shape1, shape2, default_sparsity):98    _ = self._setup_session()99    all_masks = [tf.get_variable(shape=shape1, name='var1/mask'),100                 tf.get_variable(shape=shape2, name='var2/mask')]101    custom_sparsity = {}102    sparsities = sparse_utils.get_sparsities(103        all_masks, 'erdos_renyi', default_sparsity, custom_sparsity)104    sparsity1 = sparsities[all_masks[0].name]105    size1 = np.prod(shape1)106    sparsity2 = sparsities[all_masks[1].name]107    size2 = np.prod(shape2)108    # Ensure that total number of connections are similar.109    expected_zeros_uniform = (110        sparse_utils.get_n_zeros(size1, default_sparsity) +111        sparse_utils.get_n_zeros(size2, default_sparsity))112    # Ensure that total number of connections are similar....session.py
Source:session.py  
...10        fernet_key = fernet.Fernet.generate_key()11        secret_key = base64.urlsafe_b64decode(fernet_key)12        app['config']['SECRET_KEY'] = secret_key13    storage = EncryptedCookieStorage(secret_key, cookie_name='API_SESSION')...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
