Best Python code snippet using pandera_python
functions.py
Source:functions.py  
...169            largest=True,170            short=True,171        )172    )173def pretty_param(param, value=None):174    if isinstance(param, str):175        return unit_of.get(param.split(".")[0], "{}").format(value)176    elif isinstance(param, dict):177        return [178            f"{param_}: {pretty_param(param_, value_)}"179            for param_, value_ in param.items()180        ]181    else:182        print(f"{NAME}.pretty_param({param.__class__.__name__}), class not found.")183def pretty_shape(shape):184    """describe shape as a string.185    Args:186        shape (List[int]): shape.187    Returns:188        str: shape as string.189    """190    return "x".join([str(value) for value in list(shape)])191def pretty_shape_of_matrix(matrix):192    """describe size of matrix as a string.193    Args:194        matrix (Any): matrix.195    Returns:196        str: size of matrix....elasticsearch.py
Source:elasticsearch.py  
...19                                    not create new cluster!")20@require_basic_auth21class ElasticsearchClusterInitHandler(ElasticSearchBaseHandler):22    def post(self):23        param = self.pretty_param()24        cluster_name = param['clusterName']25        self.check_cluster(cluster_name)26        self.elastic_op.init_cluster(param)27        self.finish({"message": "creating cluster successful!"})28@require_basic_auth29class ElasticsearchNodeInitHandler(ElasticSearchBaseHandler):30    def post(self):31        param = self.pretty_param()32        self.elastic_op.init_node(param)33        self.finish({"message": "creating cluster successful!"})34@require_basic_auth35class ElasticsearchNodeSyncHandler(ElasticSearchBaseHandler):36    def post(self):37        param = self.pretty_param()38        zk_op = self.get_zkoper()39        if zk_op.cluster_exists(param['clusterName']):40            self.elastic_op.sync_node(param['clusterName'])41        self.finish({"message": "sync cluster info successful!"})42@require_basic_auth43class ElasticsearchConfigHandler(ElasticSearchBaseHandler):44    """45    function: start node46    url example: curl --user root:root -d "" "http://localhost:9999/elasticsearch/config"47    """48    def post(self):49        param = self.pretty_param()50        es_heap_size = int(param.get('es_heap_size', ES_HEAP_SIZE))51        if es_heap_size < ES_HEAP_SIZE:52            self.set_status(500)53            self.finish({"message": "para not valid!"})54            return55        self.elastic_op.config()56        self.elastic_op.sys_config(57            es_heap_size='%dg' % (es_heap_size / ES_HEAP_SIZE))58        self.finish({"message": "config cluster successful!"})59@require_basic_auth60class Elasticsearch_Start_Handler(ElasticSearchBaseHandler):61    def post(self):62        """63        function: start node...visualizations.py
Source:visualizations.py  
1from typing import List, Tuple2import matplotlib.pyplot as plt3import numpy as np4import pandas as pd5import seaborn as sns6def plot_metric_score_variation(7    data: pd.DataFrame, param: str, colors: list,8    xytext_locs: List[Tuple[int, int]], scale_y_axis: bool = True9) -> None:10    pretty_param = param.split('__')[1]11    titles = [12        'F-Score', 'G-Mean', 'Precision',13        'Recall', 'ROC AUC', 'Specificity']14    # get list of metrics to plot15    metrics_to_plot = [16        col.replace('mean_test_', '')17        for col in data.columns18        if col.startswith('mean_test_')]19    # plot metric score variation in relation with a param change by experiment20    fig = plt.figure(figsize=[10, 13])21    plt.suptitle(f'Variación de "{pretty_param}"', fontsize=14)22    plot_params = {'data': data, 'x': param}23    for index, metric in enumerate(metrics_to_plot):24        test_metric = f'mean_test_{metric}'25        train_metric = f'mean_train_{metric}'26        plt.subplot(3, 2, index+1)27        sns.lineplot(28            **plot_params,29            y=test_metric,30            label=f'test',31            color=colors[0])32        ax = sns.lineplot(33            **plot_params,34            y=train_metric,35            label=f'train',36            color=colors[1])37        set_lineplot_annotation(ax, colors, xytext_locs)38        plt.legend().remove()39        plt.title(titles[index], fontsize=14)40        plt.xlabel(pretty_param)41        plt.ylabel('puntuación')42        plt.ylim([0, 1]) if scale_y_axis else None43    handles, labels = ax.get_legend_handles_labels()44    fig.legend(  # title='Legenda'45        handles, labels, loc='upper center',46        bbox_to_anchor=(0.5, 0.965),47        ncol=2, fancybox=True, shadow=False,48        facecolor='white', edgecolor='grey')49    plt.tight_layout()50def set_lineplot_annotation(ax, colors: list, xytext_locs: List[Tuple[int, int]] = None) -> None:51    tex_locs = ['top', 'bottom']52    xytext_locs = xytext_locs or [(0, 0), (0, 0)]53    annotate_params = {54        'xytext': (0, 0),55        'textcoords': "offset points",56        'ha': 'center',57        'weight': 'bold',58        'bbox': {59            'boxstyle': 'round,pad=0.3',60            'fc': 'white',61            'alpha': 0.5}}62    for i, line in enumerate(ax.lines):63        annotate_params.update(64            {'xytext': xytext_locs[i], 'va': tex_locs[i], 'color': colors[i]})65        y_max = np.max(line.get_ydata())66        max_index = np.where(line.get_ydata() == y_max)[0][0]67        x_max = line.get_xdata()[max_index]68        ax.annotate(69            '{:.2f}%'.format(y_max*100),70            (x_max, y_max),71            **annotate_params)72        y_min = np.min(line.get_ydata())73        min_index = np.where(line.get_ydata() == y_min)[0][0]74        x_min = line.get_xdata()[min_index]75        ax.annotate(76            '{:.2f}%'.format(y_min*100),77            (x_min, y_min),...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
