Best Python code snippet using pyatom_python
base.py
Source:base.py  
...54        save_vars = self._get_save_vars(exclude=['ch_info_'])55        write_hdf5(56            fname,57            save_vars,58            title=_get_title(self.__class__, self.comment),59            overwrite=overwrite, slash='replace')60    def _get_title(self):61        return _get_title(self.__class__, self.comment)62    @classmethod63    def _read(cls, fname, comment='default'):64        return _read_container(cls, fname, comment=comment)65class BaseMarker(BaseContainer):66    """Base class for M/EEG markers"""67    def __init__(self, tmin, tmax, comment):68        BaseContainer.__init__(self, comment=comment)69        self.tmin = tmin70        self.tmax = tmax71    @property72    def _axis_map(self):73        raise NotImplementedError('This should be in every marker')74    def fit(self, epochs):75        self._fit(epochs)76        self.ch_info_ = epochs.info77        return self78    def transform(self, epochs):79        self._transform(epochs)80        return self81    def _get_title(self):82        return _get_title(self.__class__, self.comment)83    def _get_preserve_axis(self, targets):84        to_preserve = []85        if not isinstance(targets, list):86            targets = [targets]87        for elem in targets:88            if 'topography' == elem or 'channels' == elem:89                to_preserve.append('channels')90            elif 'times' == elem:91                to_preserve.append('times')92            elif 'epochs' == elem:93                to_preserve.append('epochs')94        if any(x not in self._axis_map.keys() for x in to_preserve):95            raise ValueError('Cannot reduce {} to {}'.format(96                self._get_title(), targets))97        return to_preserve98    def _reduce_to(self, reduction_func, target, picks):99        if not hasattr(self, 'data_'):100            raise ValueError('You did not fit me. Do it again after fitting '101                             'some data!')102        out, funcs = self._prepare_reduction(reduction_func, target, picks)103        for func in funcs:104            out = func(out, axis=0)105        return out106    def reduce_to_epochs(self, reduction_func, picks=None):107        """Reduce  marker to a single value per epoch.108        Parameters109        ----------110        reduction_func : list of dictionaries.111            Each dictionary should have two keys: 'axis' and 'function'.112            The marker is going to be reduced following the order of the list.113            Selecting the corresponding axis and applying the corresponding114            function.115        picks : dictionary of axis to array.116            Before appling the reduction function, the corresponding axis will117            be subselected by picks. A value of None indicates all the118            elements.119        Example:120            reduction_func = [121                {'axis': 'frequency', 'function': np.sum},122                {'axis': 'channels', 'function': np.mean},123                {'axis': 'epochs', 'function': np.mean}]124            picks = {'epochs': None, 'channels': np.arange(224)}125        Returns126        -------127        out : np.ndarray of float, shape(n_epochs,)128            The value of the marker for each epoch.129        """130        return self._reduce_to(131            reduction_func, target='epochs', picks=picks)132    def reduce_to_topo(self, reduction_func, picks=None):133        return self._reduce_to(134            reduction_func, target='topography', picks=picks)135    def reduce_to_scalar(self, reduction_func, picks=None):136        return self._reduce_to(reduction_func, target='scalar', picks=picks)137    def compress(self, reduction_func):138        if not hasattr(self, 'data_'):139            raise ValueError('You did not fit me. Do it again after fitting '140                             'some data!')141        if 'epochs' in self._axis_map:142            axis = self._axis_map['epochs']143            logger.info(144                'Compressing {} on axis {} (epochs)'.format(145                    self._get_title(), axis)146            )147            data = reduction_func(self.data_, axis=axis)148            # Keep dimension149            self.data_ = np.expand_dims(data, axis=axis)150    def _prepare_data(self, picks, target):151        data = self.data_152        to_preserve = self._get_preserve_axis(target)153        if picks is not None:154            if any([x not in self._axis_map for x in picks.keys()]):155                raise ValueError('Picking is not compatible for {}'.format(156                    self._get_title()))157            for axis, ax_picks in picks.items():158                if axis in to_preserve:159                    continue160                if ax_picks is not None:161                    this_axis = self._axis_map[axis]162                    data = (data.swapaxes(this_axis, 0)[ax_picks, ...]163                                .swapaxes(0, this_axis))164        return data165    def _prepare_reduction(self, reduction_func, target, picks,166                           return_axis=False):167        data = self._prepare_data(picks, target)168        _axis_map = self._axis_map169        funcs = list()170        axis_to_preserve = self._get_preserve_axis(target)171        if len(axis_to_preserve) > 0:172            removed_axis = []173            for this_axis_to_preserve in axis_to_preserve:174                removed_axis.append(_axis_map.pop(this_axis_to_preserve))175            if reduction_func is not None:176                reduction_func = [i for i in reduction_func177                                  if i['axis'] not in axis_to_preserve]178        permutation_list = list()179        permutation_axes = list()180        if reduction_func is None:181            for ax_name, remaining_axis in _axis_map.items():182                permutation_list.append(remaining_axis)183                permutation_axes.append(ax_name)184                funcs.append(np.mean)185        elif len(reduction_func) == len(_axis_map):186            for rec in reduction_func:187                this_axis = _axis_map.pop(rec['axis'])188                permutation_axes.append(rec['axis'])189                permutation_list.append(this_axis)190                funcs.append(rec['function'])191        else:192            raise ValueError('Run `python -c "import this"` to see '193                             'why we will not tolerate these things')194        if len(axis_to_preserve) > 0:195            permutation_list += removed_axis196        logger.info('Reduction order for {}: {}'.format(197            self._get_title(), permutation_axes))198        data = np.transpose(data, permutation_list)199        if return_axis is False:200            out = data, funcs201        else:202            out = data, funcs, permutation_axes203        return out204class BaseTimeLocked(BaseMarker):205    def __init__(self, tmin, tmax, comment):206        BaseMarker.__init__(self, tmin, tmax, comment)207    def fit(self, epochs):208        self.ch_info_ = epochs.info209        self.shape_ = epochs.get_data().shape210        self.epochs_ = epochs211        self.data_ = epochs.get_data()212        return self213    def compress(self, reduction_func):214        logger.info(215            'TimeLocked markers cannot be compressed '216            'epoch-wise ({})'.format(self._get_title()))217    def save(self, fname, overwrite=False):218        if not isinstance(fname, Path):219            fname = Path(fname)220        self._save_info(fname, overwrite=overwrite)221        save_vars = self._get_save_vars(222            exclude=['ch_info_', 'data_', 'epochs_'])223        has_epochs = False224        with h5py.File(fname, 'r') as h5fid:225            if 'nice/data/epochs' in h5fid:226                has_epochs = True227                logger.info('Epochs already present in HDF5 file, '228                            'will not be overwritten')229        if not has_epochs:230            epochs = self.epochs_231            logger.info('Writing epochs to HDF5 file')232            write_hdf5_mne_epochs(fname, epochs, overwrite=overwrite)233        write_hdf5(234            fname, save_vars, overwrite=overwrite,235            title=_get_title(self.__class__, self.comment), slash='replace')236    @classmethod237    def _read(cls, fname, epochs, comment='default'):238        return _read_time_locked(cls, fname=fname, epochs=epochs,239                                 comment=comment)240    def _get_title(self):241        return _get_title(self.__class__, self.comment)242class BaseDecoding(BaseMarker):243    def __init__(self, tmin, tmax, comment):244        BaseMarker.__init__(self, tmin, tmax, comment)245    def fit(self, epochs):246        self._fit(epochs)247        return self248    def _get_title(self):249        return _get_title(self.__class__, self.comment)250def _get_title(klass, comment):251    if issubclass(klass, BaseMarker):252        kind = 'marker'253    elif issubclass(klass, BaseContainer):254        kind = 'container'255    else:256        raise NotImplementedError('Oh no-- what is this?')257    return '/'.join([258        'nice', kind, klass.__name__, comment])259def _read_container(klass, fname, comment='default'):260    data = read_hdf5(fname,  _get_title(klass, comment), slash='replace')261    init_params = {k: v for k, v in data.items() if not k.endswith('_')}262    attrs = {k: v for k, v in data.items() if k.endswith('_')}263    file_info = read_hdf5(fname, title='nice/data/ch_info', slash='replace')264    if 'filename' in file_info:265        del(file_info['filename'])266    attrs['ch_info_'] = Info(file_info)267    out = klass(**init_params)268    for k, v in attrs.items():269        if k.endswith('_'):270            setattr(out, k, v)271    return out272def _check_epochs_consistency(info1, info2, shape1, shape2):273    if version.parse(mne.__version__) < version.parse('0.24'):274        from mne.epochs import _compare_epochs_infos...metadata.py
Source:metadata.py  
...11        super(MetadataTab, self).__init__(app, figurepage, client)12        self.content = None13    def _is_useable(self):14        return True15    def _get_title(self, title):16        return Paragraph(17            text=title,18            css_classes=['table-title'])19    def _get_no_params(self):20        return Paragraph(text="No parameters", css_classes=['table-info'])21    def _get_parameter_table(self, params):22        tablegen = TableGenerator()23        params = get_params(params)24        if len(params) == 0:25            return self._get_no_params()26        else:27            for k, v in params.items():28                params[k] = paramval2str(k, v)29        return tablegen.get_table(params)30    def _get_values_table(self, values):31        tablegen = TableGenerator()32        if len(values) == 0:33            values[''] = ''34        return tablegen.get_table(values)35    def _get_strategy(self, strategy):36        columns = []37        childs = []38        childs.append(self._get_title(f'Strategy: {obj2label(strategy)}'))39        childs.append(self._get_parameter_table(strategy.params))40        for o in strategy.observers:41            childs.append(self._get_title(f'Observer: {obj2label(o)}'))42            childs.append(self._get_parameter_table(o.params))43        for a in strategy.analyzers:44            childs.append(self._get_title(f'Analyzer: {obj2label(a)}{" [Analysis Table]" if hasattr(a, "get_analysis_table") else ""}'))45            childs.append(self._get_parameter_table(a.params))46        columns.append(column(childs))47        return columns48    def _get_indicators(self, strategy):49        columns = []50        childs = []51        inds = strategy.getindicators()52        for i in inds:53            if isinstance(i, bt.IndicatorBase):54                childs.append(self._get_title(55                    f'Indicator: {obj2label(i)}@{obj2data(i)}'))56                childs.append(self._get_parameter_table(i.params))57        columns.append(column(childs))58        return columns59    def _get_datas(self, strategy):60        columns = []61        childs = []62        for data in strategy.datas:63            tabdata = {64                'DataName:': str(data._dataname).replace('|', '\\|'),65                'Timezone:': str(data._tz),66                'Live:': f'{"Yes" if data.islive() else "No"}',67                'Length:': len(data),68                'Granularity:': f'{data._compression} {bt.TimeFrame.getname(data._timeframe, data._compression)}',69            }70            # live trading does not have valid data parameters (other datas71            # might also not have)72            if not math.isinf(data.fromdate):73                tabdata['Time From:'] = str(bt.num2date(data.fromdate))74            if not math.isinf(data.todate):75                tabdata['Time To:'] = str(bt.num2date(data.todate))76            childs.append(self._get_title(f'Data Feed: {obj2label(data, True)}'))77            childs.append(self._get_values_table(tabdata))78        columns.append(column(childs))79        return columns80    def _get_metadata_columns(self, strategy):81        acolumns = []82        acolumns.extend(self._get_strategy(strategy))83        acolumns.extend(self._get_indicators(strategy))84        acolumns.extend(self._get_datas(strategy))85        return acolumns86    def _get_metadata_info(self):87        acolumns = self._get_metadata_columns(self._figurepage.strategy)88        info = gridplot(89            acolumns,90            ncols=self._app.scheme.metadata_tab_num_cols,...export_MPDS.py
Source:export_MPDS.py  
...26        for _ in range(12):27            basename.append(random.choice("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"))28        return "".join(basename)29    @classmethod30    def _get_title(cls, term):31        return cls.human_names.get(term, term.capitalize())32    @classmethod33    def save_plot(cls, data, columns, plottype, fmt='json', **kwargs):34        """35        Exports the data in the following formats for plotting:36        csv: for any external plotting application37        json: for a web-app at https://mpds.io/visavis38        """39        cls._verify_export_dir()40        plot = {"use_visavis_type": plottype, "payload": {}}41        if isinstance(data, pd.DataFrame):42            iter_data = data.iterrows43            pointers = columns44        else:45            iter_data = lambda: enumerate(data)46            pointers = range(len(data[0]))47        if fmt == 'csv':48            fmt_export = os.path.join(cls.export_dir, cls._gen_basename() + ".csv")49            f_export = open(fmt_export, "w")50            f_export.write("%s\n" % ",".join(map(str, columns)))51            for _, row in iter_data():52                f_export.write("%s\n" % ",".join([str(row[i]) for i in pointers]))53            f_export.close()54        else:55            fmt_export = os.path.join(cls.export_dir, cls._gen_basename() + ".json")56            f_export = open(fmt_export, "w")57            if plottype == 'bar':58                plot["payload"] = {"x": [], "y": [], "xtitle": cls._get_title(columns[0]), "ytitle": cls._get_title(columns[1])}59                for _, row in iter_data():60                    plot["payload"]["x"].append(row[pointers[0]])61                    plot["payload"]["y"].append(row[pointers[1]])62            elif plottype == 'plot3d':63                plot["payload"]["points"] = {"x": [], "y": [], "z": [], "labels": []}64                plot["payload"]["meshes"] = []65                plot["payload"]["xtitle"] = cls._get_title(columns[0])66                plot["payload"]["ytitle"] = cls._get_title(columns[1])67                plot["payload"]["ztitle"] = cls._get_title(columns[2])68                recent_mesh = 069                for _, row in iter_data():70                    plot["payload"]["points"]["x"].append(row[pointers[0]])71                    plot["payload"]["points"]["y"].append(row[pointers[1]])72                    plot["payload"]["points"]["z"].append(row[pointers[2]])73                    plot["payload"]["points"]["labels"].append(row[pointers[3]])74                    if row[4] != recent_mesh:75                        plot["payload"]["meshes"].append({"x": [], "y": [], "z": []})76                    recent_mesh = row[4]77                    if plot["payload"]["meshes"]:78                        plot["payload"]["meshes"][-1]["x"].append(row[pointers[0]])79                        plot["payload"]["meshes"][-1]["y"].append(row[pointers[1]])80                        plot["payload"]["meshes"][-1]["z"].append(row[pointers[2]])81            if kwargs:...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
