Best Python code snippet using pytest-cov
module.py
Source:module.py  
...183        lam2=0.1184        lam3=0.1185        # self.temp_rbatch1.data[0] = dbatch1186        self.modG1.forward(mx.io.DataBatch([dbatch1],[None]))187        outG1 = self.modG1.get_outputs()[0]188        self.bce_loss.forward(mx.io.DataBatch([outG1],[dbatch2]))189        bceloss = self.bce_loss.get_outputs()[0]190        # for_back = mx.nd.ones(self.bce_loss.get_outputs()[0].shape, self.context[-1])/self.batch_size191        clip_grad(self.bce_loss)192        self.bce_loss.backward()193        bce_loss_grad = self.bce_loss.get_input_grads()[0]194        self.loss[0,0] = mx.nd.mean(bceloss).asnumpy()195        # self.modG1.backward([bce_loss_grad])196        D1_fake_input = mx.nd.zeros((outG1.shape[0], 4, outG1.shape[2],outG1.shape[3]),self.context[-1])197        D1_real_input = mx.nd.zeros((outG1.shape[0], 4, outG1.shape[2], outG1.shape[3]),self.context[-1])198        for i in range(outG1.shape[0]):199            D1_fake_input[i, :, :, :] = mx.nd.concat(dbatch1[i, :, :, :], outG1[i, :, :, :], dim=0)200            D1_real_input[i, :, :, :] = mx.nd.concat(dbatch1[i, :, :, :], dbatch2[i, :, :, :],dim=0)201        # forward D1202        self.temp_label[:] = 0203        self.modD1.forward(mx.io.DataBatch([D1_fake_input], [self.temp_label]), is_train=True)204        loss_d1_1 = mx.nd.mean(self.modD1.get_outputs()[0]).asnumpy().copy()205        for_back = mx.nd.ones(self.modD1.get_outputs()[0].shape, self.context[-1])/self.batch_size*lam1206        clip_grad(self.modD1)207        self.modD1.backward([for_back])208        self._save_temp_gradD1()209        self.temp_label[:] = 1210        self.modD1.forward(mx.io.DataBatch([D1_fake_input], [self.temp_label]), is_train=True)211        for_back = mx.nd.ones(self.modD1.get_outputs()[0].shape, self.context[-1])/self.batch_size*lam1212        clip_grad(self.modD1)213        self.modD1.backward([for_back])214        diffD1 = self.modD1.get_input_grads()[0].copy()215        self.outputs_fake1 = [x.copyto(x.context) for x in self.modD1.get_outputs()]216        self.temp_label[:] = 1217        self.modD1.forward(mx.io.DataBatch([D1_real_input], [self.temp_label]), is_train=True)218        # part2 = mx.nd.log(min_max_fun(self.modD1.get_outputs()[0]))219        # self.loss[0,1] = mx.nd.mean(0.1*(part1+part2)).asnumpy()220        loss_d1_2 = mx.nd.mean(self.modD1.get_outputs()[0]).asnumpy().copy()221        self.loss[0, 1] = loss_d1_1 + loss_d1_2222        for_back = mx.nd.ones(self.modD1.get_outputs()[0].shape,self.context[-1])/self.batch_size*lam1223        clip_grad(self.modD1)224        self.modD1.backward([for_back])225        self._add_temp_gradD1()226        self.outputs_real1 = self.modD1.get_outputs()227        # forward G2228        self.temp_rbatch2.data[0] = D1_fake_input229        self.modG2.forward(self.temp_rbatch2)230        outG2 = self.modG2.get_outputs()[0]231        self.l1_loss.forward(mx.io.DataBatch([outG2],[dbatch3]))232        l1loss = self.l1_loss.get_outputs()[0]233        for_back = mx.nd.ones(self.l1_loss.get_outputs()[0].shape,self.context[-1])/self.batch_size*lam2234        clip_grad(self.l1_loss)235        self.l1_loss.backward([for_back])236        l1_loss_grad = self.l1_loss.get_input_grads()[0]237        self.loss[0,2] = mx.nd.mean(l1loss).asnumpy()238        D2_fake_input = mx.nd.zeros((outG2.shape[0], 7, outG2.shape[2], outG2.shape[3]),self.context[-1])239        D2_real_input = mx.nd.zeros((outG2.shape[0], 7, outG2.shape[2], outG2.shape[3]),self.context[-1])240        for i in range(outG2.shape[0]):241            D2_fake_input[i, :, :, :] = mx.nd.concat(D1_fake_input[i, :, :, :], outG2[i, :, :, :], dim=0)242            D2_real_input[i, :, :, :] = mx.nd.concat(D1_real_input[i, :, :, :], dbatch3[i, :, :, :], dim=0)243        # forward D2244        self.temp_label[:] = 0245        self.modD2.forward(mx.io.DataBatch([D2_fake_input], [self.temp_label]), is_train=True)246        # part1 = mx.nd.log(1 - min_max_fun(self.modD2.get_outputs()[0]))247        loss_d2_1 = mx.nd.mean(self.modD2.get_outputs()[0]).asnumpy().copy()248        # self.loss[0, 3] = self.loss[0, 3] + mx.nd.mean(self.modD2.get_outputs()[0]).asnumpy()249        for_back = mx.nd.ones(self.modD2.get_outputs()[0].shape,self.context[-1])/self.batch_size*lam3250        clip_grad(self.modD2)251        self.modD2.backward([for_back])252        self._save_temp_gradD2()253        self.temp_label[:] = 1254        self.modD2.forward(mx.io.DataBatch([D2_fake_input], [self.temp_label]), is_train=True)255        self.loss[0, 3] = self.loss[0, 3] + mx.nd.mean(mx.nd.mean(self.modD2.get_outputs()[0])).asnumpy()256        for_back = mx.nd.ones(self.modD2.get_outputs()[0].shape,self.context[-1])/self.batch_size*lam3257        clip_grad(self.modD2)258        self.modD2.backward([for_back])259        diffD2 = self.modD2.get_input_grads()[0].copy()260        self.outputs_fake2 = [x.copyto(x.context) for x in self.modD2.get_outputs()]261        # for updating G2262        self.temp_label[:] = 1263        self.modD2.forward(mx.io.DataBatch([D2_real_input], [self.temp_label]), is_train=True)264        loss_d2_2 = mx.nd.mean(self.modD2.get_outputs()[0]).asnumpy().copy()265        self.loss[0, 3] = loss_d2_1 + loss_d2_2266        for_back = mx.nd.ones(self.modD2.get_outputs()[0].shape,self.context[-1])/self.batch_size*lam3267        clip_grad(self.modD2)268        self.modD2.backward([for_back])269        self._add_temp_gradD2()270        # diffD2 = self.modD2.get_input_grads()[0]271        self.outputs_real2 = self.modD2.get_outputs()272        # self.outputs_fake2 = [x.copyto(x.context) for x in self.modD2.get_outputs()]273        # update D2274        # self.temp_label[:] = self.pos_label275        # self.modD2.forward(mx.io.DataBatch([D2_real_input], [self.temp_label]), is_train=True)276        # self.modD2.backward()277        # self._add_temp_gradD2()278        self.modD2.update()279        # self.outputs_real2 = self.modD2.get_outputs()280        self.temp_outG2 = outG2281        # self.temp_diffD2 = diffD2282        # update D1283        # self.temp_label[:] = self.pos_label284        # self.modD1.forward(mx.io.DataBatch([D1_real_input], [self.temp_label]), is_train=True)285        # self.modD1.backward()286        # self._add_temp_gradD1()287        self.modD1.update()288        # self.outputs_real1 = self.modD1.get_outputs()289        self.temp_outG1 = outG1290        # self.temp_diffD1 = diffD1291        # update G2292        # self.modG2.backward([diffD2[:,4:,:,:]])293        clip_grad(self.modG2)294        self.modG2.backward([diffD2[:,4:,:,:] + l1_loss_grad])295        tmp_G2_grads = self.modG2.get_input_grads()[0]296        self.modG2.update()297        # update G1298        # self.modG1.backward([mx.nd.slice_axis(diffD1,axis=1,begin=3,end=4)299        #                      + mx.nd.slice_axis(diffD2,axis=1,begin=3,end=4)])300        clip_grad(self.modG1)301        self.modG1.backward([mx.nd.slice_axis(diffD1,axis=1,begin=3,end=4)302                             + bce_loss_grad + mx.nd.slice_axis(diffD2,axis=1,begin=3,end=4)303                             + mx.nd.slice_axis(tmp_G2_grads,axis=1,begin=3,end=4)])304        # self.modG1.backward([bce_loss_grad])305        self.modG1.update()306    def forward(self, dbatch1):307        self.temp_rbatch1.data[0] = dbatch1308        self.modG1.forward(self.temp_rbatch1)309        outG1 = self.modG1.get_outputs()[0]310        D1_fake_input = mx.nd.zeros((outG1.shape[0], 4, outG1.shape[2], outG1.shape[3]), self.context[-1])311        for i in range(outG1.shape[0]):312            D1_fake_input[i, :, :, :] = mx.nd.concat(dbatch1[i, :, :, :], outG1[i, :, :, :], dim=0)313        # forward G2314        self.temp_rbatch2.data[0] = D1_fake_input315        self.modG2.forward(self.temp_rbatch2)316        outG2 = self.modG2.get_outputs()[0]317        self.temp_outG2 = outG2318        self.temp_outG1 = outG1319# class SemiGANModule(GANBaseModule):320#     """A semisupervised gan that can take both labeled and unlabeled data.321#     """322#     def __init__(self,323#                  symbol_generator,324#                  symbol_encoder,325#                  context,326#                  data_shape,327#                  code_shape,328#                  num_class,329#                  pos_label=0.9):330#         super(SemiGANModule, self).__init__(331#             symbol_generator, context, code_shape)332#         # the discriminator encoder333#         context = context if isinstance(context, list) else [context]334#         batch_size = data_shape[0]335#         self.num_class = num_class336#         encoder = symbol_encoder337#         encoder = mx.sym.FullyConnected(338#             encoder, num_hidden=num_class + 1, name="energy")339#         self.modD = mx.mod.Module(symbol=encoder,340#                                   data_names=("data",),341#                                   label_names=None,342#                                   context=context)343#         self.modD.bind(data_shapes=[("data", data_shape)],344#                        inputs_need_grad=True)345#         self.pos_label = pos_label346#         # discriminator loss347#         energy = mx.sym.Variable("energy")348#         label_out = mx.sym.SoftmaxOutput(energy, name="softmax")349#         ul_pos_energy = mx.sym.slice_axis(350#             energy, axis=1, begin=0, end=num_class)351#         ul_pos_energy = ops.log_sum_exp(352#             ul_pos_energy, axis=1, keepdims=True, name="ul_pos")353#         ul_neg_energy = mx.sym.slice_axis(354#             energy, axis=1, begin=num_class, end=num_class + 1)355#         ul_pos_prob = mx.sym.LogisticRegressionOutput(356#             ul_pos_energy - ul_neg_energy, name="dloss")357#         # use module to bind the358#         self.mod_label_out = mx.mod.Module(359#             symbol=label_out,360#             data_names=("energy",),361#             label_names=("softmax_label",),362#             context=context)363#         self.mod_label_out.bind(364#             data_shapes=[("energy", (batch_size, num_class + 1))],365#             label_shapes=[("softmax_label", (batch_size,))],366#             inputs_need_grad=True)367#         self.mod_ul_out = mx.mod.Module(368#             symbol=ul_pos_prob,369#             data_names=("energy",),370#             label_names=("dloss_label",),371#             context=context)372#         self.mod_ul_out.bind(373#             data_shapes=[("energy", (batch_size, num_class + 1))],374#             label_shapes=[("dloss_label", (batch_size,))],375#             inputs_need_grad=True)376#         self.mod_ul_out.init_params()377#         self.mod_label_out.init_params()378#         self.temp_label = mx.nd.zeros(379#             (batch_size,), ctx=context[0])380#381#     def update(self, dbatch, is_labeled):382#         """Update the model for a single batch."""383#         # generate fake image384#         mx.random.normal(0, 1.0, out=self.temp_rbatch.data[0])385#         self.modG.forward(self.temp_rbatch)386#         outG = self.modG.get_outputs()387#         self.temp_label[:] = self.num_class388#         self.modD.forward(mx.io.DataBatch(outG, []), is_train=True)389#         self.mod_label_out.forward(390#             mx.io.DataBatch(self.modD.get_outputs(), [self.temp_label]), is_train=True)391#         self.mod_label_out.backward()392#         self.modD.backward(self.mod_label_out.get_input_grads())393#         self._save_temp_gradD()394#         # update generator395#         self.temp_label[:] = 1396#         self.modD.forward(mx.io.DataBatch(outG, []), is_train=True)397#         self.mod_ul_out.forward(398#             mx.io.DataBatch(self.modD.get_outputs(), [self.temp_label]), is_train=True)399#         self.mod_ul_out.backward()400#         self.modD.backward(self.mod_ul_out.get_input_grads())401#         diffD = self.modD.get_input_grads()402#         self.modG.backward(diffD)403#         self.modG.update()404#         self.outputs_fake = [x.copyto(x.context) for x in self.mod_ul_out.get_outputs()]405#         # update discriminator406#         self.modD.forward(mx.io.DataBatch(dbatch.data, []), is_train=True)407#         outD = self.modD.get_outputs()408#         self.temp_label[:] = self.pos_label409#         self.mod_ul_out.forward(410#             mx.io.DataBatch(outD, [self.temp_label]), is_train=True)411#         self.outputs_real = [x.copyto(x.context) for x in self.mod_ul_out.get_outputs()]412#         if is_labeled:413#             self.mod_label_out.forward(414#                 mx.io.DataBatch(outD, dbatch.label), is_train=True)415#             self.mod_label_out.backward()416#             egrad = self.mod_label_out.get_input_grads()417#         else:418#             self.mod_ul_out.backward()419#             egrad = self.mod_ul_out.get_input_grads()420#         self.modD.backward(egrad)421#         self._add_temp_gradD()422#         self.modD.update()423#         self.temp_outG = outG...Test_ABE.py
Source:Test_ABE.py  
...17        self.board = Board(Canvas())18    def set_board_1010(self):19        self.set_board_10()20        self.board.connect_pins(21            self.src_A.get_outputs()[0], self.element.get_inputs()[2]22        )23        self.board.connect_pins(24            self.src_B.get_outputs()[0], self.element.get_inputs()[3]25        )26    def set_board_10101010(self):27        self.set_board_10()28        self.board.connect_pins(29            self.src_A.get_outputs()[0], self.element.get_inputs()[2]30        )31        self.board.connect_pins(32            self.src_B.get_outputs()[0], self.element.get_inputs()[3]33        )34        self.board.connect_pins(35            self.src_A.get_outputs()[0], self.element.get_inputs()[4]36        )37        self.board.connect_pins(38            self.src_B.get_outputs()[0], self.element.get_inputs()[5]39        )40        self.board.connect_pins(41            self.src_A.get_outputs()[0], self.element.get_inputs()[6]42        )43        self.board.connect_pins(44            self.src_B.get_outputs()[0], self.element.get_inputs()[7]45        )46    def set_board_01010101(self):47        self.set_board_01()48        self.board.connect_pins(49            self.src_A.get_outputs()[0], self.element.get_inputs()[2]50        )51        self.board.connect_pins(52            self.src_B.get_outputs()[0], self.element.get_inputs()[3]53        )54        self.board.connect_pins(55            self.src_A.get_outputs()[0], self.element.get_inputs()[4]56        )57        self.board.connect_pins(58            self.src_B.get_outputs()[0], self.element.get_inputs()[5]59        )60        self.board.connect_pins(61            self.src_A.get_outputs()[0], self.element.get_inputs()[6]62        )63        self.board.connect_pins(64            self.src_B.get_outputs()[0], self.element.get_inputs()[7]65        )66    def set_board_010(self):67        self.set_board_01()68        self.board.connect_pins(69            self.src_A.get_outputs()[0], self.element.get_inputs()[2]70        )71    def set_board_010100(self):72        self.set_board_01()73        self.board.connect_pins(74            self.src_A.get_outputs()[0], self.element.get_inputs()[2]75        )76        self.board.connect_pins(77            self.src_B.get_outputs()[0], self.element.get_inputs()[3]78        )79        self.board.connect_pins(80            self.src_A.get_outputs()[0], self.element.get_inputs()[4]81        )82        self.board.connect_pins(83            self.src_A.get_outputs()[0], self.element.get_inputs()[5]84        )85    def set_board_0101_0011_00_01(self):86        self.set_board_01()87        self.board.connect_pins(88            self.src_A.get_outputs()[0], self.element.get_inputs()[2]89        )90        self.board.connect_pins(91            self.src_B.get_outputs()[0], self.element.get_inputs()[3]92        )93        self.board.connect_pins(94            self.src_A.get_outputs()[0], self.element.get_inputs()[4]95        )96        self.board.connect_pins(97            self.src_A.get_outputs()[0], self.element.get_inputs()[5]98        )99        self.board.connect_pins(100            self.src_B.get_outputs()[0], self.element.get_inputs()[6]101        )102        self.board.connect_pins(103            self.src_B.get_outputs()[0], self.element.get_inputs()[7]104        )105        self.board.connect_pins(106            self.src_A.get_outputs()[0], self.element.get_inputs()[8]107        )108        self.board.connect_pins(109            self.src_A.get_outputs()[0], self.element.get_inputs()[9]110        )111        self.board.connect_pins(112            self.src_A.get_outputs()[0], self.element.get_inputs()[10]113        )114        self.board.connect_pins(115            self.src_B.get_outputs()[0], self.element.get_inputs()[11]116        )117    def set_board_10_00_10(self):118        self.set_board_10()119        self.board.connect_pins(120            self.src_B.get_outputs()[0], self.element.get_inputs()[2]121        )122        self.board.connect_pins(123            self.src_B.get_outputs()[0], self.element.get_inputs()[3]124        )125        self.board.connect_pins(126            self.src_A.get_outputs()[0], self.element.get_inputs()[4]127        )128        self.board.connect_pins(129            self.src_B.get_outputs()[0], self.element.get_inputs()[5]130        )131    # def set_shifters(self):132    #     self.board.clear()133    #     self.set_board_10()134    #     self.shifter = self.board.create_element(self.el)135    #     self.board.connect_pins(self.src_A.get_outputs()[0], self.shifter.get_inputs()[0])136    #     self.board.connect_pins(self.src_B.get_outputs()[0], self.shifter.get_inputs()[1])137    #     self.board.connect_pins(self.src_A.get_outputs()[0], self.shifter.get_inputs()[2])138    #     self.board.connect_pins(self.src_B.get_outputs()[0], self.shifter.get_inputs()[3])139    def test_ShiftLeft(self):140        """Testing left shifter"""141        self.el = ShiftLeft142        self.board.clear()143        self.element = self.board.create_element(self.el)144        self.set_board_1010()145        self.assertEqual(146            [147                self.element.get_outputs()[i].get_state()148                for i in range(len(self.element.get_outputs()))149            ],150            [False, True, False, False],151        )152    def test_ShiftRight(self):153        """Testing left shifter"""154        self.el = ShiftRight155        self.board.clear()156        self.element = self.board.create_element(self.el)157        self.set_board_1010()158        self.assertEqual(159            [160                self.element.get_outputs()[i].get_state()161                for i in range(len(self.element.get_outputs()))162            ],163            [False, True, False, True],164        )165    def test_HalfAdder(self):166        """Testing half adder"""167        self.el = HalfAdder168        self.board.clear()169        self.element = self.board.create_element(self.el)170        self.set_board_11()171        self.assertEqual(172            [173                self.element.get_outputs()[i].get_state()174                for i in range(len(self.element.get_outputs()))175            ],176            [False, True],177        )178    def test_Adder(self):179        """Testing adder"""180        self.el = Adder181        self.board.clear()182        self.element = self.board.create_element(self.el)183        self.set_board_010()184        self.assertEqual(185            [186                self.element.get_outputs()[i].get_state()187                for i in range(len(self.element.get_outputs()))188            ],189            [True, False],190        )191    def test_HalfSubstractor(self):192        """Testing half substractor"""193        self.el = HalfSubstractor194        self.board.clear()195        self.element = self.board.create_element(self.el)196        self.set_board_10()197        self.assertEqual(198            [199                self.element.get_outputs()[i].get_state()200                for i in range(len(self.element.get_outputs()))201            ],202            [True, False],203        )204    def test_Substractor(self):205        """Testing substractor"""206        self.el = Substractor207        self.board.clear()208        self.element = self.board.create_element(self.el)209        self.set_board_010()210        self.assertEqual(211            [212                self.element.get_outputs()[i].get_state()213                for i in range(len(self.element.get_outputs()))214            ],215            [True, True],216        )217    def test_Decoder(self):218        """Testing decoder"""219        self.el = Decoder220        self.board.clear()221        self.element = self.board.create_element(self.el)222        self.set_board_010()223        self.assertEqual(224            [225                self.element.get_outputs()[i].get_state()226                for i in range(len(self.element.get_outputs()))227            ],228            [False, False, False, False, False, True, False, False],229        )230    def test_Encoder_4_to_2(self):231        """Testing 4-to-2 encoder"""232        self.el = Encoder_4_to_2233        self.board.clear()234        self.element = self.board.create_element(self.el)235        self.set_board_1010()236        self.assertEqual(237            [238                self.element.get_outputs()[i].get_state()239                for i in range(len(self.element.get_outputs()))240            ],241            [True, True, True],242        )243    def test_Encoder_8_to_3(self):244        """Testing 4-to-2 encoder"""245        self.el = Encoder_8_to_3246        self.board.clear()247        self.element = self.board.create_element(self.el)248        self.set_board_01010101()249        self.assertEqual(250            [251                self.element.get_outputs()[i].get_state()252                for i in range(len(self.element.get_outputs()))253            ],254            [True, True, False, True],255        )256    def test_Multiplexor(self):257        """Testing  multiplexor"""258        self.el = Multiplexor259        self.board.clear()260        self.element = self.board.create_element(self.el)261        self.set_board_010100()262        self.assertEqual(263            [264                self.element.get_outputs()[i].get_state()265                for i in range(len(self.element.get_outputs()))266            ],267            [True],268        )269    def test_ALU_1_bit(self):270        """Testing 1-bit ALU"""271        self.el = ALU_1_bit272        self.board.clear()273        self.element = self.board.create_element(self.el)274        self.set_board_10_00_10()275        self.assertEqual(276            [277                self.element.get_outputs()[i].get_state()278                for i in range(len(self.element.get_outputs()))279            ],280            [False, False, False],281        )282    def test_ALU_4_bit(self):283        """Testing 4-bit ALU"""284        self.el = ALU_4_bit285        self.board.clear()286        self.element = self.board.create_element(self.el)287        self.set_board_0101_0011_00_01()288        self.assertEqual(289            [290                self.element.get_outputs()[i].get_state()291                for i in range(len(self.element.get_outputs()))292            ],293            [False, False, True, False, False, False],294        )295if __name__ == "__main__":...aimedTest.py
Source:aimedTest.py  
1import math2def get_outputs(i, x, w, b):3    print(f"################### TEST #{i} ###################")4    print(f"X: {x}")5    print(f"W: {w}")6    print(f"b: {b}")7    sum = summation(x, w, b)8    print(f"Sum result:\t\t\t\t {sum}")9    f_z = sigmoid_output(sum)10    print(f"Sigmoid output:\t\t\t {f_z}")11    #the sum with 12 bits12    sum_in_circuit = round(sum/lsb_in)13    print(f"Sum value quantized:\t {sum_in_circuit}")14    f_z_in_circuit = round(f_z/lsb_out)15    print(f"Output value quantized:\t {f_z_in_circuit}")16def summation(x, w, b):17    sum = 018    for i in range(0, 10):19        sum += x[i]*w[i]20    sum += b21    return sum22def sigmoid_output(s):23    res = (1)/(1 + math.exp(-s))24    return res25lsb_out = (1)/(2**15 - 1)26lsb_in = (32)/(2**11 - 1)27#Test #128x = [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]29w = [1,1,1,1,1,1,1,1,1,1]30b = 031get_outputs(1, x, w, b)32#Test #233x = [-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75]34get_outputs(2, x, w, b)35#Test #336x = [-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5]37get_outputs(3, x, w, b)38#Test #439w = [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]40get_outputs(4, x, w, b)41#Test #542w = [0,0,0,0,0,0,0,0,0,0]43get_outputs(5, x, w, b)44#Test #645w = [-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5]46get_outputs(6, x, w, b)47#Test #748x = [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]49w = [1,1,1,1,1,1,1,1,1,1]50get_outputs(7, x, w, b)51#Test #852x = [0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75]53get_outputs(8, x, w, b)54#Test #955x = [1,1,1,1,1,1,1,1,1,1]56get_outputs(9, x, w, b)57#Test #1058b = 159get_outputs(10, x, w, b)60#Test #1161x = [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]62b = -1...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
