Best Python code snippet using slash
app.py
Source:app.py  
1from flask import Flask,render_template,request,redirect,url_for,session2from flask_bootstrap import Bootstrap3import MySQLdb4import os5from math import sqrt6from sklearn import neighbors7from os import listdir8from os.path import isdir, join, isfile, splitext9import shutil10import pickle11from PIL import Image, ImageFont, ImageDraw, ImageEnhance12import face_recognition13from face_recognition import face_locations14from face_recognition.face_recognition_cli import image_files_in_folder15from datetime import datetime,timedelta16from pytz import timezone17import xlsxwriter18import pandas as pd19from glob import glob20from flask_mail import Mail, Message21from io import BytesIO22import base6423import lable_image24app = Flask(__name__,static_folder="excel")25# mail settings26app.config.update(27    DEBUG = True,28    #Email settings29    MAIL_SERVER = 'smtp.gmail.com',30    MAIL_PORT = 465,31    MAIL_USE_SSL = True,32    MAIL_USERNAME = 'college1118@gmail.com',33    MAIL_PASSWORD = 'yog12345',34    MAIL_DEFAULT_SENDER = 'college1118@gmail.com'35    )36mail = Mail(app)37# declaring timezone then creating custom date format 38india = timezone('Asia/Kolkata')39date = str(datetime.now(india))[:10] + "@" + str(datetime.now())[11:13] + "hrs"40# getting the location of root directory of the webapp41APP_ROOT = os.path.dirname(os.path.abspath(__file__))42APP_ROOT1 = APP_ROOT.split('teachers_site')43# connection with mysql database using python package MySQLdb44conn = MySQLdb.connect(user='root', passwd='', port=2811, host='localhost',db="login_info")45@app.route('/')46def index():47    return render_template("index.html",title="Faculty Login")48@app.after_request49def set_response_headers(response):50    response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'51    response.headers['Pragma'] = 'no-cache'52    response.headers['Expires'] = '0'53    return response54@app.route('/login',methods=['POST'])55def login():56    print(APP_ROOT)57    print(APP_ROOT1[0])58    user = str(request.form["user"])59    session['user'] = user60    paswd = str(request.form["password"])61    username = user.split(".",1)[0]62    username = str(username)63    print(username)64    print(type(username))65    cursor = conn.cursor()66    result = cursor.execute("SELECT * from teacher_login where binary username=%s and binary password=%s",[user,paswd])67    if(result is 1):68        return render_template("task.html",uname=username)69    else:70        return render_template("index.html",title="Faculty Login",msg="The username or password is incorrect")71@app.after_request72def set_response_headers(response):73    response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'74    response.headers['Pragma'] = 'no-cache'75    response.headers['Expires'] = '0'76    return response77@app.route('/upload_redirect',methods=['POST'])78def upload_redirect():79    if(os.path.isfile(APP_ROOT+"/image.jpeg")):80        os.remove(APP_ROOT + "/image.jpeg")81    return render_template("upload.html")82@app.route("/upload", methods=['POST'])83def upload():84    if not os.path.isfile(APP_ROOT+"/image.jpeg"):85        return render_template("upload.html",msg="spoof detected")86    id_folder = str(request.form['id_folder'])87    session['id_folder']= id_folder88    target = os.path.join(APP_ROOT,"test/")89    if not os.path.isdir(target):90        os.mkdir(target)91    target1 = os.path.join(target,str(request.form["folder_name"])+"/")92    test_append = str(request.form["folder_name"])93    session['test_append']= test_append94    print(target1)95    if not os.path.isdir(target1):96        os.mkdir(target1)97    shutil.copyfile(APP_ROOT+"/"+"image.jpeg",target1+"image.jpeg")98    destination = APP_ROOT + "/" + "test/" + test_append + "/" + "image.jpeg"99    100    session['destination'] = destination101    teacher_name = str(session.get('user'))102    session['teacher_name'] = teacher_name103    #return render_template("upload.html",msg="uploaded successfully")104    return match()105@app.after_request106def set_response_headers(response):107    response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'108    response.headers['Pragma'] = 'no-cache'109    response.headers['Expires'] = '0'110    return response111def match():112    destination = str(session.get('destination'))113    print(destination)114    if os.path.isfile(destination):115        test_append = str(session.get('test_append'))116        session['test_append'] = test_append117        id_folder = str(session.get('id_folder'))118        train_dir = APP_ROOT1[0]+"admin_site/train/"+ test_append119        try:120            model = APP_ROOT1[0]+"admin_site/model/"+test_append+"/" + id_folder + "/" +"model"121            print(model)122            return predict1(model)123        except FileNotFoundError:124            os.remove(APP_ROOT1[0]+"teachers_site/image.jpeg")125            return render_template("upload.html",msg="trained model not present for " + test_append + ": "+id_folder)126        127def predict(X_img_path, knn_clf = None, model_save_path ="", DIST_THRESH = .45):128    if knn_clf is None and model_save_path == "":129        raise Exception("must supply knn classifier either thourgh knn_clf or model_save_path")130    if knn_clf is None:131        with open(model_save_path, 'rb') as f:132            knn_clf = pickle.load(f)133    X_img = face_recognition.load_image_file(X_img_path)134    X_faces_loc = face_locations(X_img)135    if len(X_faces_loc) == 0:136        return []137    faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_faces_loc)138    closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1)139    is_recognized = [closest_distances[0][i][0] <= DIST_THRESH for i in range(len(X_faces_loc))]140    141    return [(pred) if rec else ("unknown") for pred, rec in zip(knn_clf.predict(faces_encodings), is_recognized)]142def predict1(model):143    test_append = str(session.get('test_append'))144    test_dir = APP_ROOT1[0]+"teachers_site/test/" + test_append145    f_preds = []146    for img_path in listdir(test_dir):147        preds = predict(join(test_dir, img_path) ,model_save_path=model)148        f_preds.append(preds)149        print(f_preds)150    print(len(preds))151    print(len(f_preds))152    for i in range(len(f_preds)):153        if(f_preds[i]==[]):154            os.remove(APP_ROOT1[0]+"teachers_site/image.jpeg")155            return render_template("upload.html",msg="upload again, face not found")156        else:157            os.remove(APP_ROOT1[0]+"teachers_site/image.jpeg")158    excel = os.path.join(APP_ROOT,"excel/")159    if not os.path.isdir(excel):160        os.mkdir(excel)161    excel1 = os.path.join(excel,test_append)162    if not os.path.isdir(excel1):163        os.mkdir(excel1)164    teacher_name = str(session.get('teacher_name'))165    excel2 = os.path.join(excel1,teacher_name)166    if not os.path.isdir(excel2):167        os.mkdir(excel2)168    session['excel2'] = excel2169    excel3 = excel2+"/"+date+'.xlsx'170    if not os.path.isfile(excel3):171        workbook = xlsxwriter.Workbook(excel2+"/"+date+'.xlsx')172        worksheet = workbook.add_worksheet()173        worksheet.set_column(0,0,20)174        worksheet.write('A1','Roll Id')175        f_preds.sort()176        row = 1177        col = 0178        for i in range(len(f_preds)):179            for j in range(len(f_preds[i])):180                worksheet.write_string(row,col,f_preds[i][j])181                row += 1182        workbook.close()183        return render_template("upload.html",msg= f_preds[0][0] + " present")184    else:185        df = pd.read_excel(excel2+"/"+date+'.xlsx')186        writer = pd.ExcelWriter(excel2 + "/" + date+'.xlsx')187        df.to_excel(writer,sheet_name="Sheet1",index=False)188        workbook  = writer.book189        worksheet = writer.sheets['Sheet1']190        rows=df.shape[0]191        worksheet.write_string(rows+1,0,f_preds[0][0])192        writer.save()193        df = pd.read_excel(excel2+"/"+date+'.xlsx')194        df.drop_duplicates(['Roll Id'],keep='first',inplace=True)195        result = df.sort_values("Roll Id")196        writer = pd.ExcelWriter(excel2 + "/" + date+'.xlsx')197        result.to_excel(writer,'Sheet1',index=False)198        workbook = writer.book199        worksheet = writer.sheets['Sheet1']200        worksheet.set_column(0,0,20)201        writer.save()202        return render_template("upload.html",msg= f_preds[0][0] + " present")203@app.route('/view_report',methods=['POST'])204def view_report():205    return render_template("excel.html")206# view route to download excel files 207@app.route('/view',methods=['POST'])208def view():209    test_append = str(request.form['folder_name'])210    session['test_append']=test_append211    teacher_name = str(session.get('user'))212    excel_dir = APP_ROOT+"/excel/"+test_append+"/"+teacher_name+"/"213    excel_date = request.form['fname']214    time = request.form['ftime']215    time = time[:2]216    print(time)217    final_excel=glob(excel_dir + "/" + excel_date+ "@" + time +"*.xlsx")[0]218    print(final_excel)219    df = pd.read_excel(final_excel)220    df.index += 1221    return render_template("files.html",msg=final_excel,df=df,date=excel_date+"@"+time+"hrs")222@app.route('/excel/<path:filename>', methods=['POST'])223def download(filename):    224    return send_from_directory(directory='excel', filename=filename)225# route to send emails to parents and students226@app.route('/send_mail',methods=['POST'])227def send_mail():228    test_append = str(request.form['folder_name'])229    teacher_name = str(session.get('user'))230    excel_dir = APP_ROOT+"/excel/"+test_append+"/"+teacher_name+"/"231    excel_date = request.form['fname']232    time = request.form['ftime']233    time = time[:2]234    final_send = glob(excel_dir + "/" + excel_date+ "@" + time +"*.xlsx")[0]235    print(final_send)236    df = pd.read_excel(final_send)237    roll_id = list(df['Roll Id'])238    print(type(roll_id))239    print(roll_id)240    cursor = conn.cursor()241    for i in range(len(roll_id)):242        cursor.execute("SELECT student_email,parent_email from student_login where binary roll_id=%s",[roll_id[i]])243        email = list(cursor.fetchone())244        print(type(email[1]))245        print(email[0])246        print(email[1])247        msg = Message('Auto Generated',recipients= [email[0],email[1]])248        msg.body = "Hi.. " + roll_id[i] + " is present for the lecture of " + "Prof. " +str(teacher_name.split('.',1)[0]) + ", which is held on " + excel_date + "@" + time + "hrs"249        msg.html = "Hi.. " + roll_id[i] + " is present for the lecture of " + "Prof. " +str(teacher_name .split('.',1)[0])+ ", which is held on " + excel_date + "@" + time + "hrs"250        mail.send(msg)251    return "<h1>mail sent<h1>"252@app.route('/update',methods=['POST'])253def update():254    test_append = str(request.form['excel_folder'])255    print(test_append)256    teacher_name = str(session.get('user'))257    print(teacher_name)258    excel_dir = APP_ROOT + "/excel/" + test_append + "/" + teacher_name + "/"259    print(excel_dir)260    for file in request.files.getlist("updated_excel"):261        print(file)262        filename = file.filename263        print(filename)264        destination = "/".join([excel_dir,filename])265        print(destination)266        file.save(destination)267    return render_template("excel.html",msg="updated successfully")268@app.route('/calculate',methods=['POST'])269def calculate():270    test_append = str(request.form['final_class'])271    print(test_append)272    teacher_name = str(session.get('user'))273    print(teacher_name)274    excel_root = APP_ROOT + "/excel/" + test_append + "/" + teacher_name + "/"275    print(excel_root)276    excel_names = os.listdir(excel_root)277    print(excel_names) 278    for i in range(len(excel_names)):279        if excel_names[i].startswith("."):280            os.remove(excel_root+excel_names[i])281        else:282            if os.path.isdir(excel_root+excel_names[i]):283                shutil.rmtree(excel_root+excel_names[i], ignore_errors=False, onerror=None)284    excel_names = os.listdir(excel_root)285    if(excel_names==[]):286        return render_template("excel.html",msg1="No excel files found")287    for i in range(len(excel_names)):288        excel_names[i] = excel_root + excel_names[i]289    print(type(excel_names))290    # read them in291    excels = [pd.ExcelFile(name) for name in excel_names]292    # turn them into dataframes293    frames = [x.parse(x.sheet_names[0], header=None,index_col=None) for x in excels]294    # delete the first row for all frames except the first295    # i.e. remove the header row -- assumes it's the first296    frames[1:] = [df[1:] for df in frames[1:]]297    # concatenate them..298    combined = pd.concat(frames)299    if not os.path.isdir(excel_root+"final/"):300        os.mkdir(excel_root + "final/")301    final = excel_root + "final/"302    print(final)303    # write it out304    combined.to_excel(final+"final.xlsx", header=False, index=False)305    # below code is to find actual repetative blocks306    workbook = pd.ExcelFile(final+"final.xlsx")307    df = workbook.parse('Sheet1')308    sample_data = df['Roll Id'].tolist()309    print (sample_data)310    #a dict that will store the poll results311    results = {}312    for response in sample_data:313        results[response] = results.setdefault(response, 0) + 1314    finaldf = (pd.DataFrame(list(results.items()), columns=['Roll Id', 'Total presenty']))315    finaldf = finaldf.sort_values("Roll Id")316    print (finaldf)317    writer = pd.ExcelWriter(final+"final.xlsx")318    finaldf.to_excel(writer,'Sheet1',index=False)319    workbook  = writer.book320    worksheet = writer.sheets['Sheet1']321    worksheet.set_column(0,1,20)322    writer.save()323    final = final + "final.xlsx"324    session['final']=final325    final = final[91:]326    return viewfinal(final)327def viewfinal(final):328    test_append = str(session.get('test_append'))329    final_path = str(session.get('final'))330    df = pd.read_excel(final_path)331    df.index += 1332    return render_template("files.html",msg=final,course=test_append,df=df)333@app.route('/changetask',methods=['POST'])334def changetask():335    return render_template("task.html")336@app.route('/logout',methods=['POST'])337def logout():338    return render_template("index.html",title="Faculty Login",msg1="Logged out please login again")339@app.route('/hello',methods=['POST'])340def hello():341    data_url = request.values['imageBase64']342    data_url= data_url[22:] 343    im = Image.open(BytesIO(base64.b64decode(data_url)))344    print(type(im))345    im.save('image.jpeg')346    filepath = APP_ROOT + "/" + "image.jpeg"347    var = lable_image.function(filepath)348    print(var)349    for i in range(len(var)):350        if(var[i] > 0.8):351            os.remove(filepath)352    return ''353if(__name__ == '__main__'):354    app.secret_key = 'super secret key'...second.py
Source:second.py  
1import warnings2warnings.filterwarnings('ignore')3import pandas as pd4import numpy as np5import gc6import pickle7import time8import xgboost as xgb9from sklearn.preprocessing import LabelEncoder10from lightgbm import LGBMClassifier11from sklearn.linear_model import LinearRegression,Ridge,Lasso12from sklearn.metrics import mean_squared_error13from mlxtend.regressor import StackingRegressor,StackingCVRegressor14from sklearn.model_selection import cross_val_score,GridSearchCV15from sklearn import metrics16save_path = './data_final/'17def fun(x):18    if x >= 0.5:19        return 120    else:21        return 022with open(save_path + 'invite_info.pkl','rb') as file:23    invite_info = pickle.load(file)24member_feat = pd.read_hdf(save_path + 'member_feat.h5',key='data')25question_feat = pd.read_hdf(save_path + 'question_feat.h5',key='data')26member_question_feat = pd.read_hdf(save_path + 'member_question_feat.h5',key='data')27invite_info_evaluate = invite_info.ix[:1000]28invite_info_test = invite_info.ix[1000:2000]29invite_info = invite_info.ix[2000:]30tt = invite_info_evaluate['label']31ttt = invite_info_test['label']32del invite_info_evaluate['label'],invite_info_test['label']33invite_info['author_question_id'] = invite_info['author_id'] + invite_info['question_id']34invite_info_evaluate['author_question_id'] = invite_info_evaluate['author_id'] + invite_info_evaluate['question_id']35invite_info_test['author_question_id'] = invite_info_test['author_id'] + invite_info_test['question_id']36train = invite_info.merge(member_feat, 'left', 'author_id')37test = invite_info_evaluate.merge(member_feat, 'left', 'author_id')38pre = invite_info_test.merge(member_feat,'left','author_id')39train = train.merge(question_feat, 'left', 'question_id')40test = test.merge(question_feat, 'left', 'question_id')41pre = pre.merge(question_feat,'left','question_id')42train = train.merge(member_question_feat, 'left', 'author_question_id')43test = test.merge(member_question_feat, 'left', 'author_question_id')44pre = pre.merge(member_question_feat,'left','author_question_id')45del member_feat, question_feat, member_question_feat46gc.collect()47drop_feats = ['question_id', 'author_id', 'author_question_id', 'invite_time', 'label', 'invite_day']48used_feats = [f for f in train.columns if f not in drop_feats]49train_x = train[used_feats].reset_index(drop=True)50train_y = train['label'].reset_index(drop=True)51test_x = test[used_feats].reset_index(drop=True)52pre_x = pre[used_feats].reset_index(drop=True)53# LGBMClassifier54'''55model_lgb = LGBMClassifier(boostiong_type='gdbt',num_leaves=64,learning_rate=0.01,n_estimators=2500,max_bin=425,subsample_for_bin=50000,objective='binary',min_split_gain=0,min_child_weight=5,min_child_samples=10,subsample=0.8,subsample_freq=1,colsample_bytree=1,req_alpha=3,reg_lambda=5,seed=1000,n_jobs=-1,silent=True)56model_lgb.fit(train_x,train_y,eval_names=['train'],eval_metric=['logloss','auc'],eval_set=[(train_x,train_y)],early_stopping_rounds=10)57test_y = model_lgb.predict_proba(test_x)[:,1]58print("test auc: ",metrics.roc_auc_score(tt,test_y))59test_append = invite_info_evaluate[['question_id', 'author_id', 'invite_time']]60test_append['answer'] = test_y61test_append['answer'] = test_append['answer'].apply(lambda x: fun(x))62test_append['true'] = tt63test_append.to_csv('result_test_LGBM.txt',index=False,header=False,sep='\t')64pre_y = model_lgb.predict_proba(pre_x)[:,1]65print("pre auc: ",metrics.roc_auc_score(ttt,pre_y))66pre_append = invite_info_test[['question_id', 'author_id', 'invite_time']]67pre_append['answer'] = pre_y68pre_append['answer'] = pre_append['answer'].apply(lambda x: fun(x))69pre_append['true'] = ttt70pre_append.to_csv('result_pre_LGBM.txt',index=False,header=False,sep='\t')71'''72'''73# Stacking One74print("Let's Begin Stacking Model One")75lr = LinearRegression()76ridge = Ridge(random_state = 2019,)77models = [lr,ridge]78for model in models:79    model.fit(train_x,train_y)80    pred = model.predict(test_x)81    print("loss is {}".format(mean_squared_error(tt,pred)))82sclf = StackingRegressor(regressors = models,meta_regressor = ridge)83sclf.fit(train_x,train_y)84test_y= sclf.predict(test_x)85print("test auc: ",metrics.roc_auc_score(tt,test_y))86test_append = invite_info_evaluate[['question_id', 'author_id', 'invite_time']]87test_append['answer'] = test_y88test_append['answer'] = test_append['answer'].apply(lambda x: fun(x))89test_append['true'] = tt90test_append.to_csv('result_test_S1.txt',index=False,header=False,sep='\t')91pre_y= sclf.predict(pre_x)92print("pre auc: ",metrics.roc_auc_score(ttt,pre_y))93pre_append = invite_info_test[['question_id', 'author_id', 'invite_time']]94pre_append['answer'] = pre_y95pre_append['answer'] = pre_append['answer'].apply(lambda x: fun(x))96pre_append['true'] = ttt97pre_append.to_csv('result_pre_S1.txt',index=False,header=False,sep='\t')98'''99# Xgboost100'''101params = {'n_estimators': 10, 'seed': 0, 'n_estimators': 600, 'max_depth': 6, 'min_child_weight' :1, 'gamma': 0.2, 'subsample': 0.8, 'colsample_bytree': 0.9, 'reg_alpha':0.1, 'reg_lambda':0.05, 'learning_rate':0.01}102model = xgb.XGBRegressor(params=params, booster='dart')103model.fit(train_x, train_y)104test_y = model.predict(test_x)105print("test auc: ",metrics.roc_auc_score(tt,test_y))106test_append = invite_info_evaluate[['question_id', 'author_id', 'invite_time']]107test_append['answer'] = test_y108test_append['answer'] = test_append['answer'].apply(lambda x: fun(x))109test_append['true'] = tt110test_append.to_csv('result_test_Xgboost.txt',index=False,header=False,sep='\t')111pre_y= model.predict(pre_x)112print("pre auc: ",metrics.roc_auc_score(ttt,pre_y))113pre_append = invite_info_test[['question_id', 'author_id', 'invite_time']]114pre_append['answer'] = pre_y115pre_append['answer'] = pre_append['answer'].apply(lambda x: fun(x))116pre_append['true'] = ttt117pre_append.to_csv('result_pre_Xgboost.txt',index=False,header=False,sep='\t')118'''119# Stacking_Two120print("Let's Begin Stacking Model Two!")121lr = LinearRegression()122ridge = Ridge(random_state=2019,)123lasso =Lasso()124models = [lr,ridge, lasso]125params = {'lasso__alpha': [0.1, 1.0, 10.0],'ridge__alpha': [0.1, 1.0, 10.0]}126sclf = StackingCVRegressor(regressors=models, meta_regressor=ridge)127sclf = StackingCVRegressor(regressors=models, meta_regressor=ridge)128grid = GridSearchCV(estimator=sclf, param_grid=params, cv=5, refit=True)129grid.fit(train_x, train_y)130test_y = grid.predict(test_x)131print("test auc: ",metrics.roc_auc_score(tt,test_y))132test_append = invite_info_evaluate[['question_id', 'author_id', 'invite_time']]133test_append['answer'] = test_y134test_append['answer'] = test_append['answer'].apply(lambda x: fun(x))135test_append['true'] = tt136test_append.to_csv('result_test_S2.txt',index=False,header=False,sep='\t')137pre_y= grid.predict(pre_x)138print("pre auc: ",metrics.roc_auc_score(ttt,pre_y))139pre_append = invite_info_test[['question_id', 'author_id', 'invite_time']]140pre_append['answer'] = pre_y141pre_append['answer'] = pre_append['answer'].apply(lambda x: fun(x))142pre_append['true'] = ttt...test_storage.py
Source:test_storage.py  
...8    def setUp(self):9        self.space = RNNSpace(20, 5)10        self.storage = Storage()11        self.arch = Architect(self.space)12    def test_append(self, na_points=0):13        c = 014        starting_len = len(self.storage)15        while c < 10 + na_points:16            description, logps, values, entropies = self.arch.sample()17            desc = self.space.preprocess(description, (-1, 128))18            if desc is not None:19                param_count = sum(self.space.parameter_count(desc)[:2]) / 1e620                self.storage.append(description, logps, values, entropies,21                                    uniform(.6, 1) if c < 10 else None,22                                    param_count)23                c += 124        self.assertEqual(len(self.storage), starting_len+10+na_points)25    def test_reward(self):26        chosen_description = None27        while chosen_description is None:28            description, logps, values, entropies = self.arch.sample()29            desc = self.space.preprocess(description, (-1, 128))30            if desc is not None:31                if uniform(0, 1) < .5:32                    chosen_description = description33                param_count = sum(self.space.parameter_count(desc)[:2]) / 1e6  # Million parameters34                self.storage.append(description, logps, values, entropies, None, param_count)35        self.storage.reward(chosen_description, 1.)36        index = self.storage.find(chosen_description)37        self.assertIsNotNone(index)38        self.assertTrue(torch.eq(self.storage[index][-3], 1.).all())39    def test__update_advantages(self):40        chosen_description = None41        while chosen_description is None:42            description, logps, values, entropies = self.arch.sample()43            desc = self.space.preprocess(description, (-1, 128))44            if desc is not None:45                if uniform(0, 1) < .5:46                    chosen_description = description47                param_count = sum(self.space.parameter_count(desc)[:2]) / 1e6  # Million parameters48                self.storage.append(description, logps, values, entropies, None, param_count)49        for adv in self.storage.advantages:50            self.assertEqual(torch.sum(adv != adv), adv.numel())51        self.storage.reward(chosen_description, 1.)52        index = self.storage.find(chosen_description)53        self.assertIsNotNone(index)54        self.assertFalse(np.isnan(self.storage[index][-3].mean().item()))55    def test_update(self):56        desc = None57        while desc is None:58            description, logps, values, entropies = self.arch.sample()59            desc = self.space.preprocess(description, (-1, 128))60            if desc is not None:61                param_count = sum(self.space.parameter_count(desc)[:2]) / 1e6  # Million parameters62                self.storage.append(description, logps, values, entropies, None, param_count)63                self.arch.reset()64                _, logps_, values_, entropies_ = self.arch.evaluate_description(description)65                self.storage.update(description, logps_, values_, entropies_)66                index = self.storage.find(description)67                self.assertIsNotNone(index)68                _, logps, values, entropies, _, _, _ = self.storage[index]69                self.assertTrue(torch.eq(logps, logps_).all())70                self.assertTrue(torch.eq(values, values_).all())71                self.assertTrue(torch.eq(entropies, entropies_).all())72    def test___get_item__(self):73        self.test_append()74        self.storage[5]75        self.storage[1:4]76        self.storage[1:4:-1]77        self.storage[np.arange(5)]78    def test___del_item__(self):79        self.test_append()80        item = self.storage[5]81        del self.storage[5]82        self.assertNotEqual(item, self.storage[5])83    def test___len__(self):84        self.test_append()85        self.assertIs(len(self.storage), 10)86    def test_filterna(self):87        self.test_append(5)88        self.assertEqual(len(self.storage), 15)89        self.storage.filter_na()90        self.assertEqual(len(self.storage), 10)91class TestCurriculumStorage(TestStorage):92    def setUp(self):93        super().setUp()94        self.storage = CurriculumStorage(20)95    def test_append(self):96        super().test_append()97        self.assertIs(len(self.storage), 10)98        self.storage.set_complexity(2)99        super().test_append()100        super().test_append()101        self.assertIs(len(self.storage), 20)102        self.storage.set_complexity(1)...test_linked_list.py
Source:test_linked_list.py  
1from linked_list import __version__2from linked_list.linked_list import (LinkedList,Node)3def test_empty_linked_list():4    test_1=LinkedList()5    test_1.insert()6    actual=test_1.__str__()7    expected='(null) -> none'8    assert actual==expected9def test_insert_into_the_linked_list():10    test_2=LinkedList()11    test_2.insert(332)12    actual=test_2.head.value13    expected=33214    assert actual==expected15def test_first_node_in_the_linked_list():16    test_3=LinkedList()17    test_3.insert(332)18    test_3.insert(26)19    test_3.insert(778)20    test_3.insert(1000)21    actual=test_3.head.value22    expected=100023    assert actual==expected24def test_multiple_nodes_into_the_linked_list():25    test_4=LinkedList()26    test_4.insert(4)27    test_4.insert(5)28    actual=test_4.__str__()29    expected='(5) -> (4) -> none'30    assert actual==expected31def test_return_true_when_finding_a_value():32    test_5=LinkedList()33    test_5.insert('ahmad')34    test_5.insert('abudames')35    actual=test_5.includes('ahmad')36    expected=True37    assert actual==expected38def test_return_false_when_does_not_exist():39    test_5=LinkedList()40    test_5.insert('ahmad')41    test_5.insert('abudames')42    actual=test_5.includes('mais')43    expected=False44    assert actual==expected45def test_all_collection_values_in_in_the_linedlist():46    test_6=LinkedList()47    test_6.insert("abudames")48    test_6.insert("ameen")49    test_6.insert("shahar")50    test_6.insert("ahmad")51    actual=test_6.__str__()52    expected='(ahmad) -> (shahar) -> (ameen) -> (abudames) -> none'53    assert actual==expected54def test_end_of_the_linked_list():55    test_append=LinkedList()56    test_append.insert(22)57    test_append.insert(4)58    test_append.append(2)59    actual=test_append.__str__()60    expected='(4) -> (22) -> (2) -> none'61    assert actual==expected62def test_multiple_nodes_to_the_end_of_a_linked_list():63    test_append=LinkedList()64    test_append.append(2)65    test_append.append(1)66    actual=test_append.__str__()67    expected='(2) -> (1) -> none'68    assert actual==expected69def test_before_middle_of_the_linked_list():70    test_before=LinkedList()71    test_before.append("ahmad")72    test_before.append("shaher")73    test_before.append("abudames")74    test_before.insertBefore("abudames","ameen")75    actual=test_before.__str__()76    expected='(ahmad) -> (shaher) -> (ameen) -> (abudames) -> none'77    assert actual==expected78def test_before_the_first_node_of_a_linked_list():79     test_before_first=LinkedList()80     test_before_first.append(2)81     test_before_first.append(3)82     test_before_first.insertBefore(2,1)83     actual=test_before_first.__str__()84     expected='(1) -> (2) -> (3) -> none'85     assert actual==expected86def test_insert_after():87     test_after=LinkedList()88     test_after.append(1)89     test_after.append(3)90     test_after.insertAfter(1,2)91     actual=test_after.__str__()92     expected='(1) -> (2) -> (3) -> none'93     assert actual==expected94def test_insert_after_the_last_node():95    test_after_last_node=LinkedList()96    test_after_last_node.append(1)97    test_after_last_node.append(2)98    test_after_last_node.insertAfter(2,3)99    actual=test_after_last_node.__str__()100    expected='(1) -> (2) -> (3) -> none'101    assert actual==expected102def test_k_is_greater_than_the_length():103    test_k=LinkedList()104    test_k.insert(1)105    test_k.insert(3)106    test_k.insert(8)107    test_k.insert(2)108    test_k.NthFromLast(4)109    actual=test_k.__str__()110    expected="exception"111    assert actual==expected112def test_ths_same_of_length():113    test_k=LinkedList()114    test_k.insert(1)115    test_k.insert(3)116    test_k.insert(8)117    test_k.insert(2)118    test_k.NthFromLast(3)119    actual=test_k.__str__()120    expected='(2) -> (8) -> (3) -> (1) -> none'121    assert actual==expected122def test_not_a_positive_integer():123    test_k=LinkedList()124    test_k.insert(1)125    test_k.insert(3)126    test_k.insert(8)127    test_k.insert(2)128    test_k.NthFromLast(-1)129    actual=test_k.__str__()130    expected='(2) -> (8) -> (3) -> (1) -> none'131    assert actual==expected132def test_linked_list_is_of_a_size_1():133    test_k=LinkedList()134    test_k.insert(1)135    test_k.insert(3)136    test_k.insert(8)137    test_k.insert(2)138    test_k.NthFromLast(1)139    actual=test_k.__str__()140    expected='(2) -> (8) -> (3) -> (1) -> none'141    assert actual==expected142def test_k_in_the_middle():143    test_k=LinkedList()144    test_k.insert(1)145    test_k.insert(3)146    test_k.insert(8)147    test_k.insert(2)148    test_k.insert(5)149    test_k.NthFromLast(2)150    actual=test_k.__str__()151    expected='(5) -> (2) -> (8) -> (3) -> (1) -> none'...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
