Best Python code snippet using sure_python
augment.py
Source:augment.py  
1#!/usr/bin/env python2# coding: utf-834# # Data distribution check56# In[14]:789import numpy as np10import os11import pandas as pd12import matplotlib.pyplot as plt13#import umap as umap1415"""16# In[24]:171819# Read the old and new data 20old = pd.read_csv('data_x_old.csv', header=None,sep=' ',dtype='float')21old.info()22old = old.values23new = pd.read_csv('data_x.csv', header=None,sep=' ',dtype='float')24new.info()25new = new.values262728# ## Histogram2930# In[29]:313233# Plot the histogram of data34def histogram_plot(data, dim):35    f = plt.figure()36    # Determine if this is a new data37    if np.shape(data)[0] == 17500:38        new_flag = True39        name = 'new'40    else:41        new_flag = False42        name = 'old'43    # Plot the histogram44    plt.hist(data[:, dim],bins=100)45    plt.title('histogram of axim {} of {} data '.format(dim, name))46    plt.ylabel('cnt')47    plt.xlabel('axis {}'.format(dim))48    plt.savefig('histogram of axim {} of {} data.png'.format(dim, name))495051# In[30]:525354for i in range(8):55    histogram_plot(new, i)56    histogram_plot(old, i)575859# ## Clustering6061# In[31]:626364data_all = np.concatenate([old, new])65reducer = umap.UMAP()66embedding = reducer.fit_transform(data_all)67embedding.shape686970# In[37]:717273# Plot the umap graph74lo = len(old)75ln = len(new)76label_all = np.zeros([lo + ln, ])77label_all[lo:] = 178f = plt.figure()79plt.scatter(embedding[:lo, 0], embedding[:lo, 1], label='old',s=1)80plt.legend()81plt.xlabel('u1')82plt.ylabel('u2')83plt.title('umap plot for old data')84plt.savefig('umap plot for old data.png')85f = plt.figure()86plt.scatter(embedding[lo:, 0], embedding[lo:, 1], label='new',s=1)87plt.legend()88plt.xlabel('u1')89plt.ylabel('u2')90plt.title('umap plot for new data')91plt.savefig('umap plot for new data.png')92f = plt.figure()93plt.scatter(embedding[:lo, 0], embedding[:lo, 1], label='old',s=1)94plt.scatter(embedding[lo:, 0], embedding[lo:, 1], label='new',s=1)95plt.legend()96plt.xlabel('u1')97plt.ylabel('u2')98plt.title('umap plot for old data and new data')99plt.savefig('umap plot for old data and new data.png')100101102# ## Visualization103# 104105# In[12]:106107108def plot_scatter(old, new, dim1, dim2):109    f = plt.figure()110    plt.scatter(old[:, dim1], old[:, dim2], label='old',marker='x')#,s=10)111    plt.scatter(new[:, dim1], new[:, dim2], label='new',marker='.')#,s=5)112    plt.legend()113    plt.xlabel('dim {}'.format(dim1))114    plt.ylabel('dim {}'.format(dim2))115    plt.title('scatter plot of dim{},{} of old and new data'.format(dim1, dim2))116    plt.savefig('scatter plot of dim{},{} of old and new data.png'.format(dim1, dim2))117118119# In[15]:120121122for i in range(8):123    for j in range(8):124        if i == j:125            continue126        plot_scatter(old, new, i, j)127        plt.close('all')128129130# ## Pair-wise scatter plot131132# In[19]:133134135df_old = pd.DataFrame(old)136df_new = pd.DataFrame(new)137psm = pd.plotting.scatter_matrix(df_old, figsize=(15, 15), s=10)138139140# ## Find the same and plot spectra141142# In[38]:143144145i = 0146for i in range(len(old)):147    #print(old[i,:])148    new_minus = np.sum(np.square(new - old[i,:]),axis=1)149    #print(np.shape(new_minus))150    match = np.where(new_minus==0)151    #print(match)152    if np.shape(match)[1] != 0: #There is a match153        print('we found a match! new index {} and old index {} match'.format(match, i))154155156# In[39]:157158159print('old index ', old[11819,:])160print('new index ', new[5444,:])161162163# In[35]:164165166np.shape(match)167168169# ### Plot the matched spectra170171# In[6]:172173174y_old = pd.read_csv('data_y_old.csv',header=None,sep=' ')175176177# In[42]:178179180y_new = pd.read_csv('data_y_new.csv',header=None,sep=' ')181182183# In[7]:184185186y_old = y_old.values187y_new = y_new.values188189190# In[45]:191192193# plot the spectra194old_index = 11819195new_index = 5444196f = plt.figure()197plt.plot(y_old[old_index,:],label='old geometry {}'.format(old[old_index, :]))198plt.plot(y_new[new_index,:],label='new geometry {}'.format(new[new_index, :]))199plt.legend()200plt.ylabel('transmission')201plt.xlabel('THz')202plt.savefig('Spectra plot for identicle point')203204205# # Conclusion, this simulation is not the same as before ...206207# ### See what percentage are still within range208209# In[36]:210211212#print(old)213#print(new)214hmax = np.max(old[:,0])215hmin = np.min(old[:,1])216rmax = np.max(old[:,4])217rmin = np.min(old[:,4])218219print(hmax, hmin, rmax, rmin)220221#hmax = np.max(new[:,0])222#hmin = np.min(new[:,1])223#rmax = np.max(new[:,4])224#rmin = np.min(new[:,4])225226#print(hmax, hmin, rmax, rmin)227228within_range = np.ones([len(new)])229230new_minus = np.copy(new)231new_minus[:,:4] -= hmin232new_minus[:,4:] -= rmin233234new_plus = np.copy(new)235new_plus[:, :4] -= hmax236new_plus[:, 4:] -= rmax237238small_flag = np.min(new_minus, axis=1) < 0239big_flag = np.max(new_plus, axis=1) > 0240241within_range[small_flag] = 0242within_range[big_flag] = 0243244print(np.sum(within_range) / len(within_range))245print(type(within_range))246print(np.shape(within_range))247print(within_range)248print(new[np.arange(len(within_range))[within_range.astype('bool')],:])249print(np.sum(within_range))250251252# # Data augmentation253# ## Since the geometry is symmetric, we can augment the data with permutations254255# In[13]:256257258# Check the assumption that the permutation does indeed give you the same spectra259# Check if there is same spectra260i = 0261for i in range(len(y_old)):262    #print(old[i,:])263    new_minus = np.sum(np.square(y_old - y_old[i,:]),axis=1)264    #print(np.shape(new_minus))265    match = np.where(new_minus==0)266    #print(match)267    #print(np.shape(match))268    #print(len(match))269    #if match[0]270    if len(match) != 1:#np.shape(match)[1] != 0: #There is a match271        print('we found a match! new index {} and old index {} match'.format(match, i))272273274# ### Due to physical periodic boundary condition, we can augment the data by doing permutations275276# In[39]:277"""278279def permutate_periodicity(geometry_in, spectra_in):280    """281    :param: geometry_in: numpy array of geometry [n x 8] dim282    :param: spectra_in: spectra of the geometry_in [n x k] dim283    :return: output of the augmented geometry, spectra [4n x 8], [4n x k]284    """285    # Get the dimension parameters286    (n, k) = np.shape(spectra_in)287    # Initialize the output288    spectra_out = np.zeros([4*n, k])289    geometry_out = np.zeros([4*n, 8])290    291    #################################################292    # start permutation of geometry (case: 1 - 0123)#293    #################################################294    # case:2 -- 1032 295    geometry_c2 = geometry_in[:, [1,0,3,2,5,4,7,6]]296    # case:3 -- 2301297    geometry_c3 = geometry_in[:, [2,3,0,1,6,7,4,5]]298    # case:4 -- 3210299    geometry_c4 = geometry_in[:, [3,2,1,0,7,6,5,4]]300    301    geometry_out[0*n:1*n, :] = geometry_in302    geometry_out[1*n:2*n, :] = geometry_c2303    geometry_out[2*n:3*n, :] = geometry_c3304    geometry_out[3*n:4*n, :] = geometry_c4305    306    for i in range(4):307        spectra_out[i*n:(i+1)*n,:] = spectra_in308    return geometry_out, spectra_out309310311# In[40]:312data_folder = '/work/sr365/Christian_data/dataIn'313data_out_folder = '/work/sr365/Christian_data_augmented'314for file in os.listdir(data_folder):315    data = pd.read_csv(os.path.join(data_folder, file),header=None,sep=',').values316    (l, w) = np.shape(data)317    g = data[:,2:10]318    s = data[:,10:]319    g_aug, s_aug = permutate_periodicity(g, s)320    output = np.zeros([l*4, w])321    output[:, 2:10] = g_aug322    output[:, 10:] = s_aug323    np.savetxt(os.path.join(data_out_folder, file+'_augmented.csv'),output,delimiter=',')324325# In[41]:326327328#print(np.shape(g))329330331# In[ ]:332333334
...unicornosaurus.py
Source:unicornosaurus.py  
1import numpy as np2import itertools3n_sections_broken, n_possible_fixes, IDK = list(map(int, input().split(' ')))4sections_broken = []5possible_fixes = []6power_construction = []7for _ in range(n_sections_broken):8    sections_broken.append(tuple(map(int, input().split(' '))))9for _ in range(n_possible_fixes):10    possible_fixes.append((list(map(int, input().split(' ')))))11within_range = []12for possible_fix in possible_fixes:13    for section in sections_broken:14        if possible_fix[0] <= section[0] or possible_fix[1] >= section[1]:15            within_range.append(possible_fix)16within_range = sorted(within_range)17for i in range(len(within_range)):18    for y in range(i, len(within_range)):19        try:20            if within_range[i][0] < within_range[y][0] and within_range[i][1] > within_range[y][1]:21                within_range.remove(within_range[y])22        except IndexError:23            continue24within_range = list(itertools.product(within_range, within_range))25within_range = list(dict.fromkeys(map(str, within_range)))26within_range = list(map(eval, within_range))27for i in range(len(within_range)):28    if within_range[i][0] == within_range[i][1]:29        within_range[i] = tuple(within_range[i][0])30    else:31        within_range[i] = min(within_range[i][0][0] , within_range[i][1][0]), max(within_range[i][0][1], within_range[i][1][1]), \32                           (within_range[i][0][2] + within_range[i][1][2])33within_range = sorted(within_range)34# print(within_range)35power_need = []36found_start = False37section_x = min(sections_broken)[0]38section_y = max(sections_broken)[1]39# print(section_x, section_y)40completed = False41for i in range(len(within_range)):42    if within_range[i][0] <= section_x and within_range[i][1] >= section_y:43        if found_start:44            power_need.pop()45        power_need.append(within_range[i][2])46        completed = True47        found_start = False48        break49    elif not found_start and within_range[i][0] <= section_x:50        power_need.append(within_range[i][2])51        found_start = True52    elif found_start and within_range[i][1] >= section_y:53        found_start = False54        completed = True55        break56if not completed:57    print(-1)58else:59    print(-1)60"""611 3 15625 10633 7 2646 12 5652 11 6662 4 15673 7689 10692 6 10703 9 15715 12 13728 10 30...01-Milestone1.py
Source:01-Milestone1.py  
1import os2os.system('cls')3def user_choice():4    #VARIABLES5    6    #Initial7    choice = 'Wrong'8    acceptable_values = range(0,10)9    within_range = False10    #TWO CONDITIONS TO CHECK11    # DIGIT OR WITHIN RANGE == FALSE12    while choice.isdigit() == False or within_range == False:13        choice = input("Please enter a number (0-10): ")14        #DIGIT CHECK15        if choice.isdigit() == False:16            print("Sorry, wrong value")17        #RANGE CHECK18        if choice.isdigit() == True:19            if int(choice) in acceptable_values:20                within_range = True21            else:22                print('Out of acceptable range (0-10)')23                within_range = False24    return int(choice)25def display(row1,row2,row3):26    print(row1)27    print(row2)28    print(row3)29row1 = [' ',' ',' ']30row2 = [' ',' ',' ']31row3 = [' ',' ',' ']32display(row1,row2,row3)33position_index = user_choice()...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
