Best Coyote code snippet using Microsoft.Coyote.Rewriting.Types.Threading.Monitor
Monitor.cs
Source:Monitor.cs
...15 /// Provides methods for monitors that can be controlled during testing.16 /// </summary>17 /// <remarks>This type is intended for compiler use rather than use directly in code.</remarks>18 [System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)]19 public static class Monitor20 {21 /// <summary>22 /// Acquires an exclusive lock on the specified object.23 /// </summary>24 public static void Enter(object obj)25 {26 var runtime = CoyoteRuntime.Current;27 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)28 {29 SynchronizedBlock.Lock(obj);30 }31 else32 {33 if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&34 runtime.TryGetExecutingOperation(out ControlledOperation current))35 {36 runtime.DelayOperation(current);37 }38 SystemThreading.Monitor.Enter(obj);39 }40 }41 /// <summary>42 /// Acquires an exclusive lock on the specified object.43 /// </summary>44 public static void Enter(object obj, ref bool lockTaken)45 {46 var runtime = CoyoteRuntime.Current;47 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)48 {49 lockTaken = SynchronizedBlock.Lock(obj).IsLockTaken;50 }51 else52 {53 if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&54 runtime.TryGetExecutingOperation(out ControlledOperation current))55 {56 runtime.DelayOperation(current);57 }58 SystemThreading.Monitor.Enter(obj, ref lockTaken);59 }60 }61 /// <summary>62 /// Releases an exclusive lock on the specified object.63 /// </summary>64 public static void Exit(object obj)65 {66 var runtime = CoyoteRuntime.Current;67 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)68 {69 var block = SynchronizedBlock.Find(obj) ??70 throw new SystemThreading.SynchronizationLockException();71 block.Exit();72 }73 else74 {75 SystemThreading.Monitor.Exit(obj);76 }77 }78 /// <summary>79 /// Determines whether the current thread holds the lock on the specified object.80 /// </summary>81 public static bool IsEntered(object obj)82 {83 var runtime = CoyoteRuntime.Current;84 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)85 {86 var block = SynchronizedBlock.Find(obj) ??87 throw new SystemThreading.SynchronizationLockException();88 return block.IsEntered();89 }90 return SystemThreading.Monitor.IsEntered(obj);91 }92 /// <summary>93 /// Notifies a thread in the waiting queue of a change in the locked object's state.94 /// </summary>95 public static void Pulse(object obj)96 {97 var runtime = CoyoteRuntime.Current;98 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)99 {100 var block = SynchronizedBlock.Find(obj) ??101 throw new SystemThreading.SynchronizationLockException();102 block.Pulse();103 }104 else105 {106 SystemThreading.Monitor.Pulse(obj);107 }108 }109 /// <summary>110 /// Notifies all waiting threads of a change in the object's state.111 /// </summary>112 public static void PulseAll(object obj)113 {114 var runtime = CoyoteRuntime.Current;115 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)116 {117 var block = SynchronizedBlock.Find(obj) ??118 throw new SystemThreading.SynchronizationLockException();119 block.PulseAll();120 }121 else122 {123 SystemThreading.Monitor.PulseAll(obj);124 }125 }126 /// <summary>127 /// Attempts, for the specified amount of time, to acquire an exclusive lock on the specified object,128 /// and atomically sets a value that indicates whether the lock was taken.129 /// </summary>130 public static void TryEnter(object obj, TimeSpan timeout, ref bool lockTaken)131 {132 var runtime = CoyoteRuntime.Current;133 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)134 {135 // TODO: how to implement this timeout?136 lockTaken = SynchronizedBlock.Lock(obj).IsLockTaken;137 }138 else139 {140 if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&141 runtime.TryGetExecutingOperation(out ControlledOperation current))142 {143 runtime.DelayOperation(current);144 }145 SystemThreading.Monitor.TryEnter(obj, timeout, ref lockTaken);146 }147 }148 /// <summary>149 /// Attempts, for the specified amount of time, to acquire an exclusive lock on the specified object,150 /// and atomically sets a value that indicates whether the lock was taken.151 /// </summary>152 public static bool TryEnter(object obj, TimeSpan timeout)153 {154 var runtime = CoyoteRuntime.Current;155 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)156 {157 // TODO: how to implement this timeout?158 return SynchronizedBlock.Lock(obj).IsLockTaken;159 }160 else if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&161 runtime.TryGetExecutingOperation(out ControlledOperation current))162 {163 runtime.DelayOperation(current);164 }165 return SystemThreading.Monitor.TryEnter(obj, timeout);166 }167 /// <summary>168 /// Attempts, for the specified number of milliseconds, to acquire an exclusive lock on the specified object,169 /// and atomically sets a value that indicates whether the lock was taken.170 /// </summary>171 public static void TryEnter(object obj, int millisecondsTimeout, ref bool lockTaken)172 {173 var runtime = CoyoteRuntime.Current;174 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)175 {176 // TODO: how to implement this timeout?177 lockTaken = SynchronizedBlock.Lock(obj).IsLockTaken;178 }179 else180 {181 if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&182 runtime.TryGetExecutingOperation(out ControlledOperation current))183 {184 runtime.DelayOperation(current);185 }186 SystemThreading.Monitor.TryEnter(obj, millisecondsTimeout, ref lockTaken);187 }188 }189 /// <summary>190 /// Attempts to acquire an exclusive lock on the specified object, and atomically191 /// sets a value that indicates whether the lock was taken.192 /// </summary>193 public static void TryEnter(object obj, ref bool lockTaken)194 {195 var runtime = CoyoteRuntime.Current;196 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)197 {198 // TODO: how to implement this timeout?199 lockTaken = SynchronizedBlock.Lock(obj).IsLockTaken;200 }201 else202 {203 if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&204 runtime.TryGetExecutingOperation(out ControlledOperation current))205 {206 runtime.DelayOperation(current);207 }208 SystemThreading.Monitor.TryEnter(obj, ref lockTaken);209 }210 }211 /// <summary>212 /// Attempts to acquire an exclusive lock on the specified object.213 /// </summary>214 public static bool TryEnter(object obj)215 {216 var runtime = CoyoteRuntime.Current;217 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)218 {219 return SynchronizedBlock.Lock(obj).IsLockTaken;220 }221 else if (runtime.SchedulingPolicy is SchedulingPolicy.Fuzzing &&222 runtime.TryGetExecutingOperation(out ControlledOperation current))223 {224 runtime.DelayOperation(current);225 }226 return SystemThreading.Monitor.TryEnter(obj);227 }228 /// <summary>229 /// Releases the lock on an object and blocks the current thread until it reacquires the lock.230 /// </summary>231 public static bool Wait(object obj)232 {233 var runtime = CoyoteRuntime.Current;234 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)235 {236 var block = SynchronizedBlock.Find(obj) ??237 throw new SystemThreading.SynchronizationLockException();238 return block.Wait();239 }240 return SystemThreading.Monitor.Wait(obj);241 }242 /// <summary>243 /// Releases the lock on an object and blocks the current thread until it reacquires the lock.244 /// If the specified time-out interval elapses, the thread enters the ready queue.245 /// </summary>246 public static bool Wait(object obj, int millisecondsTimeout)247 {248 var runtime = CoyoteRuntime.Current;249 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)250 {251 var block = SynchronizedBlock.Find(obj) ??252 throw new SystemThreading.SynchronizationLockException();253 return block.Wait(millisecondsTimeout);254 }255 return SystemThreading.Monitor.Wait(obj, millisecondsTimeout);256 }257 /// <summary>258 /// Releases the lock on an object and blocks the current thread until it reacquires the lock. If the259 /// specified time-out interval elapses, the thread enters the ready queue. This method also specifies260 /// whether the synchronization domain for the context (if in a synchronized context) is exited before261 /// the wait and reacquired afterward.262 /// </summary>263 public static bool Wait(object obj, int millisecondsTimeout, bool exitContext)264 {265 var runtime = CoyoteRuntime.Current;266 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)267 {268 var block = SynchronizedBlock.Find(obj) ??269 throw new SystemThreading.SynchronizationLockException();270 // TODO: implement exitContext.271 return block.Wait(millisecondsTimeout);272 }273 return SystemThreading.Monitor.Wait(obj, millisecondsTimeout, exitContext);274 }275 /// <summary>276 /// Releases the lock on an object and blocks the current thread until it reacquires the lock.277 /// If the specified time-out interval elapses, the thread enters the ready queue.278 /// </summary>279 public static bool Wait(object obj, TimeSpan timeout)280 {281 var runtime = CoyoteRuntime.Current;282 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)283 {284 var block = SynchronizedBlock.Find(obj) ??285 throw new SystemThreading.SynchronizationLockException();286 return block.Wait(timeout);287 }288 return SystemThreading.Monitor.Wait(obj, timeout);289 }290 /// <summary>291 /// Releases the lock on an object and blocks the current thread until it reacquires the lock.292 /// If the specified time-out interval elapses, the thread enters the ready queue. Optionally293 /// exits the synchronization domain for the synchronized context before the wait and reacquires294 /// the domain afterward.295 /// </summary>296 public static bool Wait(object obj, TimeSpan timeout, bool exitContext)297 {298 var runtime = CoyoteRuntime.Current;299 if (runtime.SchedulingPolicy is SchedulingPolicy.Interleaving)300 {301 var block = SynchronizedBlock.Find(obj) ??302 throw new SystemThreading.SynchronizationLockException();303 // TODO: implement exitContext.304 return block.Wait(timeout);305 }306 return SystemThreading.Monitor.Wait(obj, timeout, exitContext);307 }308 /// <summary>309 /// Provides a mechanism that synchronizes access to objects.310 /// </summary>311 internal class SynchronizedBlock : IDisposable312 {313 /// <summary>314 /// Cache from synchronized objects to synchronized block instances.315 /// </summary>316 private static readonly ConcurrentDictionary<object, Lazy<SynchronizedBlock>> Cache =317 new ConcurrentDictionary<object, Lazy<SynchronizedBlock>>();318 /// <summary>319 /// The object used for synchronization.320 /// </summary>321 protected readonly object SyncObject;322 /// <summary>323 /// True if the lock was taken, else false.324 /// </summary>325 internal bool IsLockTaken;326 /// <summary>327 /// The resource associated with this synchronization object.328 /// </summary>329 private readonly Resource Resource;330 /// <summary>331 /// The current owner of this synchronization object.332 /// </summary>333 private ControlledOperation Owner;334 /// <summary>335 /// Wait queue of asynchronous operations.336 /// </summary>337 private readonly List<ControlledOperation> WaitQueue;338 /// <summary>339 /// Ready queue of asynchronous operations.340 /// </summary>341 private readonly List<ControlledOperation> ReadyQueue;342 /// <summary>343 /// Queue of nondeterministically buffered pulse operations to be performed after releasing344 /// the lock. This allows modeling delayed pulse operations by the operation system.345 /// </summary>346 private readonly Queue<PulseOperation> PulseQueue;347 /// <summary>348 /// The number of times that the lock has been acquired per owner. The lock can only349 /// be acquired more than one times by the same owner. A count > 1 indicates that the350 /// invocation by the current owner is reentrant.351 /// </summary>352 private readonly Dictionary<ControlledOperation, int> LockCountMap;353 /// <summary>354 /// Used to reference count accesses to this synchronized block355 /// so that it can be removed from the cache.356 /// </summary>357 private int UseCount;358 /// <summary>359 /// Initializes a new instance of the <see cref="SynchronizedBlock"/> class.360 /// </summary>361 private SynchronizedBlock(object syncObject)362 {363 if (syncObject is null)364 {365 throw new ArgumentNullException(nameof(syncObject));366 }367 this.SyncObject = syncObject;368 this.Resource = new Resource();369 this.WaitQueue = new List<ControlledOperation>();370 this.ReadyQueue = new List<ControlledOperation>();371 this.PulseQueue = new Queue<PulseOperation>();372 this.LockCountMap = new Dictionary<ControlledOperation, int>();373 this.UseCount = 0;374 }375 /// <summary>376 /// Creates a new <see cref="SynchronizedBlock"/> for synchronizing access377 /// to the specified object and enters the lock.378 /// </summary>379 internal static SynchronizedBlock Lock(object syncObject) =>380 Cache.GetOrAdd(syncObject, key => new Lazy<SynchronizedBlock>(381 () => new SynchronizedBlock(key))).Value.EnterLock();382 /// <summary>383 /// Finds the synchronized block associated with the specified synchronization object.384 /// </summary>385 internal static SynchronizedBlock Find(object syncObject) =>386 Cache.TryGetValue(syncObject, out Lazy<SynchronizedBlock> lazyMock) ? lazyMock.Value : null;387 /// <summary>388 /// Determines whether the current thread holds the lock on the sync object.389 /// </summary>390 internal bool IsEntered()391 {392 if (this.Owner != null)393 {394 var op = this.Resource.Runtime.GetExecutingOperation();395 return this.Owner == op;396 }397 return false;398 }399 private SynchronizedBlock EnterLock()400 {401 this.IsLockTaken = true;402 SystemInterlocked.Increment(ref this.UseCount);403 if (this.Owner is null)404 {405 // If this operation is trying to acquire this lock while it is free, then inject a scheduling406 // point to give another enabled operation the chance to race and acquire this lock.407 this.Resource.Runtime.ScheduleNextOperation(default, SchedulingPointType.Acquire);408 }409 if (this.Owner != null)410 {411 var op = this.Resource.Runtime.GetExecutingOperation();412 if (this.Owner == op)413 {414 // The owner is re-entering the lock.415 this.LockCountMap[op]++;416 return this;417 }418 else419 {420 // Another op has the lock right now, so add the executing op421 // to the ready queue and block it.422 this.WaitQueue.Remove(op);423 if (!this.ReadyQueue.Contains(op))424 {425 this.ReadyQueue.Add(op);426 }427 this.Resource.Wait();428 this.LockCountMap.Add(op, 1);429 return this;430 }431 }432 // The executing op acquired the lock and can proceed.433 this.Owner = this.Resource.Runtime.GetExecutingOperation();434 this.LockCountMap.Add(this.Owner, 1);435 return this;436 }437 /// <summary>438 /// Notifies a thread in the waiting queue of a change in the locked object's state.439 /// </summary>440 internal void Pulse() => this.SchedulePulse(PulseOperation.Next);441 /// <summary>442 /// Notifies all waiting threads of a change in the object's state.443 /// </summary>444 internal void PulseAll() => this.SchedulePulse(PulseOperation.All);445 /// <summary>446 /// Schedules a pulse operation that will either execute immediately or be scheduled447 /// to execute after the current owner releases the lock. This nondeterministic action448 /// is controlled by the runtime to simulate scenarios where the pulse is delayed by449 /// the operation system.450 /// </summary>451 private void SchedulePulse(PulseOperation pulseOperation)452 {453 var op = this.Resource.Runtime.GetExecutingOperation();454 if (this.Owner != op)455 {456 throw new SystemSynchronizationLockException();457 }458 // Pulse has a delay in the operating system, we can simulate that here459 // by scheduling the pulse operation to be executed nondeterministically.460 this.PulseQueue.Enqueue(pulseOperation);461 if (this.PulseQueue.Count is 1)462 {463 // Create a task for draining the queue. To optimize the testing performance,464 // we create and maintain a single task to perform this role.465 Task.Run(this.DrainPulseQueue);466 }467 }468 /// <summary>469 /// Drains the pulse queue, if it contains one or more buffered pulse operations.470 /// </summary>471 private void DrainPulseQueue()472 {473 while (this.PulseQueue.Count > 0)474 {475 // Pulses can happen nondeterministically while other operations execute,476 // which models delays by the OS.477 this.Resource.Runtime.ScheduleNextOperation(default, SchedulingPointType.Default);478 var pulseOperation = this.PulseQueue.Dequeue();479 this.Pulse(pulseOperation);480 if (this.Owner is null)481 {482 this.UnlockNextReady();483 }484 }485 }486 /// <summary>487 /// Invokes the pulse operation.488 /// </summary>489 private void Pulse(PulseOperation pulseOperation)490 {491 if (pulseOperation is PulseOperation.Next)492 {493 if (this.WaitQueue.Count > 0)494 {495 // System.Threading.Monitor has FIFO semantics.496 var waitingOp = this.WaitQueue[0];497 this.WaitQueue.RemoveAt(0);498 this.ReadyQueue.Add(waitingOp);499 IO.Debug.WriteLine("[coyote::debug] Operation '{0}' is pulsed by task '{1}'.",500 waitingOp.Id, SystemTask.CurrentId);501 }502 }503 else504 {505 foreach (var waitingOp in this.WaitQueue)506 {507 this.ReadyQueue.Add(waitingOp);508 IO.Debug.WriteLine("[coyote::debug] Operation '{0}' is pulsed by task '{1}'.",509 waitingOp.Id, SystemTask.CurrentId);...
TypeRewritingPass.cs
Source:TypeRewritingPass.cs
...69 this.KnownTypes[NameCache.TaskFactory] = typeof(Types.Threading.Tasks.TaskFactory);70 this.KnownTypes[NameCache.GenericTaskFactory] = typeof(Types.Threading.Tasks.TaskFactory<>);71 this.KnownTypes[NameCache.TaskParallel] = typeof(Types.Threading.Tasks.Parallel);72 // Populate the map with the known synchronization types.73 this.KnownTypes[NameCache.Monitor] = typeof(Types.Threading.Monitor);74 this.KnownTypes[NameCache.SemaphoreSlim] = typeof(Types.Threading.SemaphoreSlim);75#if NET || NETCOREAPP3_176 // Populate the map with the known HTTP and web-related types.77 this.KnownTypes[NameCache.HttpClient] = typeof(Types.Net.Http.HttpClient);78 this.KnownTypes[NameCache.HttpRequestMessage] = typeof(Types.Net.Http.HttpRequestMessage);79#endif80 if (options.IsRewritingConcurrentCollections)81 {82 this.KnownTypes[NameCache.ConcurrentBag] = typeof(Types.Collections.Concurrent.ConcurrentBag<>);83 this.KnownTypes[NameCache.ConcurrentDictionary] = typeof(Types.Collections.Concurrent.ConcurrentDictionary<,>);84 this.KnownTypes[NameCache.ConcurrentQueue] = typeof(Types.Collections.Concurrent.ConcurrentQueue<>);85 this.KnownTypes[NameCache.ConcurrentStack] = typeof(Types.Collections.Concurrent.ConcurrentStack<>);86 }87 if (options.IsDataRaceCheckingEnabled)...
MonitorTests.cs
Source:MonitorTests.cs
...7using System.Threading.Tasks;8using Microsoft.Coyote.Specifications;9using Xunit;10using Xunit.Abstractions;11using Monitor = System.Threading.Monitor;12using SynchronizedBlock = Microsoft.Coyote.Rewriting.Types.Threading.Monitor.SynchronizedBlock;13namespace Microsoft.Coyote.BugFinding.Tests14{15 public class MonitorTests : BaseBugFindingTest16 {17 public MonitorTests(ITestOutputHelper output)18 : base(output)19 {20 }21 [Fact(Timeout = 5000)]22 public void TestSimpleMonitor()23 {24 this.Test(async () =>25 {26 SignalData signal = new SignalData();27 var t1 = Task.Run(signal.Wait);28 var t2 = Task.Run(signal.Signal);29 await Task.WhenAll(t1, t2);30 },31 this.GetConfiguration().WithTestingIterations(100));32 }33 [Fact(Timeout = 5000)]34 public void TestMonitorWithReentrancy1()35 {36 this.Test(() =>37 {38 SignalData signal = new SignalData();39 signal.ReentrantLock();40 },41 this.GetConfiguration().WithTestingIterations(100));42 }43 [Fact(Timeout = 5000)]44 public void TestMonitorWithReentrancy2()45 {46 this.Test(async () =>47 {48 SignalData signal = new SignalData();49 Task t1 = Task.Run(signal.ReentrantLock);50 Task t2 = Task.Run(signal.DoLock);51 await Task.WhenAll(t1, t2);52 },53 this.GetConfiguration().WithTestingIterations(100));54 }55 [Fact(Timeout = 5000)]56 public void TestMonitorWithReentrancy3()57 {58 this.Test(async () =>59 {60 SignalData signal = new SignalData();61 Task t1 = Task.Run(signal.ReentrantWait);62 Task t2 = Task.Run(signal.Signal);63 await Task.WhenAll(t1, t2);64 },65 this.GetConfiguration().WithTestingIterations(100));66 }67 [Fact(Timeout = 5000)]68 public void TestMonitorWithInvalidSyncObject()69 {70 this.TestWithException<ArgumentNullException>(() =>71 {72 using var monitor = SynchronizedBlock.Lock(null);73 },74 replay: true);75 }76 [Fact(Timeout = 5000)]77 public void TestMonitorWithInvalidWaitState()78 {79 this.TestWithException<SynchronizationLockException>(() =>80 {81 SynchronizedBlock monitor;82 using (monitor = SynchronizedBlock.Lock(new object()))83 {84 }85 monitor.Wait();86 },87 replay: true);88 }89 [Fact(Timeout = 5000)]90 public void TestMonitorWithInvalidPulseState()91 {92 this.TestWithException<SynchronizationLockException>(() =>93 {94 SynchronizedBlock monitor;95 using (monitor = SynchronizedBlock.Lock(new object()))96 {97 }98 monitor.Pulse();99 },100 replay: true);101 }102 [Fact(Timeout = 5000)]103 public void TestMonitorWithInvalidPulseAllState()104 {105 this.TestWithException<SynchronizationLockException>(() =>106 {107 SynchronizedBlock monitor;108 using (monitor = SynchronizedBlock.Lock(new object()))109 {110 }111 monitor.PulseAll();112 },113 replay: true);114 }115 [Fact(Timeout = 5000)]116 public void TestMonitorWithInvalidUsage()117 {118 this.TestWithError(async () =>119 {120 try121 {122 var monitor = SynchronizedBlock.Lock(new object());123 // We yield to make sure the execution is asynchronous.124 await Task.Yield();125 monitor.Pulse();126 // We do not dispose inside a using statement, because the `SynchronizationLockException`127 // will trigger the disposal, which will fail because an await statement is not allowed128 // inside a synchronized block. The C# compiler normally prevents it when using the lock129 // statement, but we cannot prevent it when directly using the mock.130 monitor.Dispose();131 }132 catch (SynchronizationLockException)133 {134 Specification.Assert(false, "Expected exception thrown.");135 }136 },137 expectedError: "Expected exception thrown.",138 replay: true);139 }140 [Fact(Timeout = 5000)]141 public void TestComplexMonitor()142 {143 this.Test(async () =>144 {145 object syncObject = new object();146 bool waiting = false;147 List<string> log = new List<string>();148 Task t1 = Task.Run(() =>149 {150 Monitor.Enter(syncObject);151 log.Add("waiting");152 waiting = true;153 Monitor.Wait(syncObject);154 log.Add("received pulse");155 Monitor.Exit(syncObject);156 });157 Task t2 = Task.Run(async () =>158 {159 while (!waiting)160 {161 await Task.Delay(1);162 }163 Monitor.Enter(syncObject);164 Monitor.Pulse(syncObject);165 log.Add("pulsed");166 Monitor.Exit(syncObject);167 });168 await Task.WhenAll(t1, t2);169 string expected = "waiting, pulsed, received pulse";170 string actual = string.Join(", ", log);171 Specification.Assert(expected == actual, "ControlledMonitor out of order, '{0}' instead of '{1}'", actual, expected);172 },173 this.GetConfiguration());174 }175 private class SignalData176 {177 private readonly object SyncObject;178 internal bool Signalled;179 internal SignalData()180 {181 this.SyncObject = new object();182 this.Signalled = false;183 }184 internal void Signal()185 {...
Monitor
Using AI Code Generation
1using Microsoft.Coyote.Rewriting.Types.Threading;2{3 static void Main(string[] args)4 {5 var obj = new object();6 lock (obj)7 {8 Monitor.Enter(obj);9 Monitor.Exit(obj);10 }11 }12}13using System.Threading;14{15 static void Main(string[] args)16 {17 var obj = new object();18 lock (obj)19 {20 Monitor.Enter(obj);21 Monitor.Exit(obj);22 }23 }24}
Monitor
Using AI Code Generation
1using Microsoft.Coyote.Rewriting.Types.Threading;2using System.Threading;3{4 static void Main(string[] args)5 {6 var monitor = new Monitor();7 var thread = new Thread(() => monitor.Enter());8 thread.Start();9 thread.Join();10 }11}12using System.Threading;13{14 static void Main(string[] args)15 {16 var monitor = new Monitor();17 var thread = new Thread(() => monitor.Enter());18 thread.Start();19 thread.Join();20 }21}22using Microsoft.Coyote.Rewriting.Types.Threading;23using System.Threading;24{25 static void Main(string[] args)26 {27 var monitor = new Monitor();28 var thread = new Thread(() => monitor.Enter());29 thread.Start();30 thread.Join();31 }32}33using Microsoft.Coyote.Rewriting.Types.Threading;34using System.Threading;35{36 static void Main(string[] args)37 {38 var monitor = new Monitor();39 var thread = new Thread(() => monitor.Enter());40 thread.Start();41 thread.Join();42 }43}
Monitor
Using AI Code Generation
1using Microsoft.Coyote.Rewriting.Types.Threading;2using System;3using System.Threading.Tasks;4{5 {6 static void Main(string[] args)7 {8 var monitor = new Monitor();9 var thread = new Thread(() => {10 monitor.Enter();11 Console.WriteLine("Hello World!");12 monitor.Exit();13 });14 thread.Start();15 thread.Join();16 }17 }18}19using System;20using System.Threading.Tasks;21{22 {23 static void Main(string[] args)24 {25 var thread = new Thread(() => {26 Console.WriteLine("Hello World!");27 });28 thread.Start();29 thread.Join();30 }31 }32}
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!