Best Python code snippet using autotest_python
ant.py
Source:ant.py  
1from random import random2import numpy3from copy import deepcopy4from texttable import Texttable5class Ant:6    def __init__(self, size):7        self._size = size8        self._representation = [[] for i in range(size * 2)]9        self._graph = [self._representation]10        self._freeSpots = size - 111    def getFreeSpotsCount(self):12        return self._freeSpots13    def getRepresentation(self):14        return self._representation15    def getGraph(self):16        return self._graph[:]17    def setRepresentation(self, newRepresentation):18        if len(self._representation[-1]) > len(newRepresentation[-1]):19            self.decreaseFreeSpots()20        self._representation = deepcopy(newRepresentation)21    def decreaseFreeSpots(self):22        self._freeSpots -= 123    def nextPossibilities(self):24        possibilities = []25        for i in range(self._size * 2 * (self._freeSpots)):26            newPossibility = deepcopy(self._representation)27            for row in range(self._size * 2):28                possibleNumbers = [i for i in range(1, self._size + 1)]29                for elem in self._representation[row]:30                    possibleNumbers.remove(elem)31                # if row >= self._size and newPossibility[row - self._size][-1] in possibleNumbers:32                #     possibleNumbers.remove(newPossibility[row - self._size][-1])33                choice = numpy.random.choice(possibleNumbers)34                newPossibility[row].append(choice)35                possibleNumbers.remove(choice)36            possibilities.append(newPossibility)37        return possibilities38    def move(self, q0, trace, alpha, beta):39        nextPossibilities = self.nextPossibilities()40        distances = []41        if len(nextPossibilities) == 0:42            return False43        auxAnt = Ant(self._size)44        for position in nextPossibilities:45            auxAnt.setRepresentation(position)46            distances.append([position, auxAnt.fitness() - self.fitness()])47        for i in range(len(distances)):48            index = [0, False]49            while index[0] < len(trace) or index[1]:50                if trace[index[0]] == distances[i][0]:51                    index[1] = True52                index[0] += 153            if index[1]:54                distances[i][1] = (distances[i][1] ** beta) * (trace(index[0]) ** alpha)55        if numpy.random.random() < q0:56            distances = min(distances, key=lambda elem:elem[1])57            self.setRepresentation(distances[0])58            self._graph.append(self._representation)59        else:60            suma = 061            for elem in distances:62                suma += elem[1]63            if suma == 0:64                choice = numpy.random.randint(0, len(distances))65                self.setRepresentation(distances[choice][0])66                self._graph.append(self._representation)67                return68            distances = [[distances[i][0], distances[i][1] / suma] for i in range(len(distances))]69            for i in range(len(distances)):70                sum = 071                for j in range(i+1):72                    sum += distances[j][1]73                distances[i][1] = sum74            choice = numpy.random.random()75            i = 076            while choice > distances[i][1]:77                i += 178            self.setRepresentation(distances[i][0])79            self._graph.append(self._representation)80        return True81    def __str__(self):82        table = Texttable()83        for i in range(self._size):84           row = []85           for j in range(len(self._representation[i])):86              row.append((self._representation[i][j], self._representation[i + self._size][j]))87           table.add_row(row)88        return table.draw()89    def fitness(self):90        fitness = 091        for i in range(self._size):92            for j in range(len(self._representation[i])):93                if self._representation[i][j] == self._representation[i + self._size][j]:94                    fitness += 195                if i < len(self._representation[i]) and self._representation[j][i] == self._representation[j + self._size][i]:96                    fitness += 197        for i in range(self._size - 1):98            for j in range(i + 1, self._size):99                fitness += numpy.count_nonzero(100                    numpy.equal(self._representation[i + self._size], self._representation[j + self._size]))101                fitness += numpy.count_nonzero(numpy.equal(self._representation[i], self._representation[j]))102        for i in range(len(self._representation[-1]) - 1):103            column11 = [self._representation[j][i] for j in range(self._size)]104            column12 = [self._representation[j + self._size][i] for j in range(self._size)]105            for j in range(i + 1, len(self._representation[i])):106                column21 = [self._representation[k][j] for k in range(self._size)]107                column22 = [self._representation[k + self._size][j] for k in range(self._size)]108                fitness += numpy.count_nonzero(numpy.equal(column11, column21))109                fitness += numpy.count_nonzero(numpy.equal(column12, column22))...containers.py
Source:containers.py  
1from typing import Iterable, Any2from .errors import StackEmptyException, QueueEmptyException3__all__ = [4  "Queue", "Stack"5]6def foreach(function, iterable: Iterable):7    for element in iterable:8        function(element)9class Queue(list):10  def __init__(self, _: Iterable = []):11    super(Queue, self).__init__(_)12    self._representation = []13  def __getattribute__(self, name):14    if name in ['append', 'index', 'remove']:15      raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")16    return super(list, self).__getattribute__(name)17  def foreach(self, function):18    foreach(function, self)19  def enqueue(self, item: Any):20    """Add an item to the beginning of the queue."""21    self.insert(0, item)22    self._representation.insert(0, item)23    return self24  def dequeue(self):25    """Removes the topmost item in the queue and returns it."""26    if(len(self) == 0 or len(self._representation) == 0):27      raise QueueEmptyException28    self._representation.pop(len(self) - 1)29    return self.pop(len(self) - 1)30  def peek(self):31    """Returns the topmost item in the queue without removing it."""32    if(len(self) == 0):33      raise QueueEmptyException34    return self[len(self) - 1]35  @property36  def empty(self):37    """A boolean property indicating whether the queue is empty or not."""38    return len(self) == 039  def __iter__(self):40    for i in self.__reversed__():41      yield i42  def extend(self, iterable: Iterable):43    for i in iterable:44      self.enqueue(i)45  def __str__(self):46    return f"<Queue {self._representation}>"47  @classmethod48  def from_dict(cls):49    pass50class Stack(list):51  def __init__(self, _: Iterable = []):52    super(Stack, self).__init__(_)53    self._representation = _54  def __getattribute__(self, name):55    if name in ['append', 'index', 'remove']:56      raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")57    return super(list, self).__getattribute__(name)58  def foreach(self, function):59    foreach(function, self)60  def push(self, item: Any):61    """Add an item to the end of the stack."""62    self.insert(len(self), item)63    self._representation.append(item)64    return self65  def pop(self):66    """Removes the last added item in the list and returns it."""67    if(len(self) == 0 or len(self._representation) == 0):68      raise StackEmptyException69    self._representation.pop(len(self) - 1)70    return self.pop(len(self) - 1)71  def peek(self):72    """Returns the topmost item in the stack without removing it."""73    if(len(self) == 0):74      raise StackEmptyException75    return self[len(self) - 1]76  @property77  def empty(self):78    """A boolean property indicating whether the stack is empty or not."""79    return len(self) == 080  def search(self, o: Any) -> int:81    """Returns the 1-based position where an object is on this stack. If the object o occurs as an item in this stack, this method returns the distance from the top of the stack of the occurrence nearest the top of the stack; the topmost item on the stack is considered to be at distance 1. The equals method is used to compare o to the items in this stack."""82    index = 083    for i in self.__reversed__():84      index += 185      if o == i:86        return index87    return -188  def __iter__(self):89    for i in self.__reversed__():90      yield i91  def __str__(self):92    return f"<Stack {self._representation}>"93  def extend(self, iterable: Iterable):94    for i in iterable:...representers.py
Source:representers.py  
1import numpy as np2from gep_utils import *3class CheetahRepresenter():4    def __init__(self):5        self._description = ['mean_vx', 'min_z']6        # define goal space7        self._initial_space = np.array([[-4, 7],[-3,2]])8        self._representation = None9    def represent(self, obs_seq, act_seq=None):10        obs = np.copy(obs_seq)11        mean_vx = np.array([obs[0, 8, :].mean()])12        min_z = np.array([obs[0, 0, :].min()])13        self._representation = np.concatenate([mean_vx, min_z], axis=0)14        # scale representation to [-1,1]^N15        self._representation = scale_vec(self._representation, self._initial_space)16        self._representation.reshape(1, -1)17        return self._representation18    @property19    def initial_space(self):20        return self._initial_space21    @property22    def dim(self):23        return self._initial_space.shape[0]24class CMCRepresenter():25    def __init__(self):26        self._description = ['max position', 'range position', 'spent energy']27        # define goal space28        self._initial_space= np.array([[-0.6, 0.6], [0., 1.8], [0, 100]])  # space in which goal are sampled29        self._representation = None30    def represent(self, obs_seq, act_seq):31        spent_energy = np.array([np.sum(act_seq[0, 0, np.argwhere(~np.isnan(act_seq))] ** 2 * 0.1)])32        diff = np.array([np.nanmax(obs_seq[0, 0, :]) - np.nanmin(obs_seq[0, 0, :])])33        max = np.array([np.nanmax(obs_seq[0, 0, :])])34        self._representation = np.concatenate([max, diff, spent_energy], axis=0)35        # scale representation to [-1,1]^N36        self._representation = scale_vec(self._representation, self._initial_space)37        self._representation.reshape(1, -1)38        return self._representation39    @property40    def initial_space(self):41        return self._initial_space42    @property43    def dim(self):...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
