Best Python code snippet using autotest_python
test_labels.py
Source:test_labels.py  
...8    sentence[1].add_label("sentiment", "positive")9    sentence[2].add_label("pos", "proper noun")10    sentence[0].add_label("pos", "pronoun")11    # check if there are three POS labels with correct text and values12    labels: List[Label] = sentence.get_labels("pos")13    assert 3 == len(labels)14    assert "I" == labels[0].data_point.text15    assert "pronoun" == labels[0].value16    assert "love" == labels[1].data_point.text17    assert "verb" == labels[1].value18    assert "Berlin" == labels[2].data_point.text19    assert "proper noun" == labels[2].value20    # check if there are is one SENTIMENT label with correct text and values21    labels: List[Label] = sentence.get_labels("sentiment")22    assert 1 == len(labels)23    assert "love" == labels[0].data_point.text24    assert "positive" == labels[0].value25    # check if all tokens are correctly labeled26    assert 3 == len(sentence)27    assert "I" == sentence[0].text28    assert "love" == sentence[1].text29    assert "Berlin" == sentence[2].text30    assert 1 == len(sentence[0].get_labels("pos"))31    assert 1 == len(sentence[1].get_labels("pos"))32    assert 2 == len(sentence[1].labels)33    assert 1 == len(sentence[2].get_labels("pos"))34    assert "verb" == sentence[1].get_label("pos").value35    assert "positive" == sentence[1].get_label("sentiment").value36    # remove the pos label from the last word37    sentence[2].remove_labels("pos")38    # there should be 2 POS labels left39    labels: List[Label] = sentence.get_labels("pos")40    assert 2 == len(labels)41    assert 1 == len(sentence[0].get_labels("pos"))42    assert 1 == len(sentence[1].get_labels("pos"))43    assert 2 == len(sentence[1].labels)44    assert 0 == len(sentence[2].get_labels("pos"))45    # now remove all pos tags46    sentence.remove_labels("pos")47    print(sentence[0].get_labels("pos"))48    assert 0 == len(sentence.get_labels("pos"))49    assert 1 == len(sentence.get_labels("sentiment"))50    assert 1 == len(sentence.labels)51    assert 0 == len(sentence[0].get_labels("pos"))52    assert 0 == len(sentence[1].get_labels("pos"))53    assert 0 == len(sentence[2].get_labels("pos"))54def test_span_tags():55    # set 3 labels for 2 spans (HU is tagged twice)56    sentence = Sentence("Humboldt Universität zu Berlin is located in Berlin .")57    sentence[0:4].add_label("ner", "Organization")58    sentence[0:4].add_label("ner", "University")59    sentence[7:8].add_label("ner", "City")60    # check if there are three labels with correct text and values61    labels: List[Label] = sentence.get_labels("ner")62    assert 3 == len(labels)63    assert "Humboldt Universität zu Berlin" == labels[0].data_point.text64    assert "Organization" == labels[0].value65    assert "Humboldt Universität zu Berlin" == labels[1].data_point.text66    assert "University" == labels[1].value67    assert "Berlin" == labels[2].data_point.text68    assert "City" == labels[2].value69    # check if there are two spans with correct text and values70    spans: List[Span] = sentence.get_spans("ner")71    assert 2 == len(spans)72    assert "Humboldt Universität zu Berlin" == spans[0].text73    assert 2 == len(spans[0].get_labels("ner"))74    assert "Berlin" == spans[1].text75    assert "City" == spans[1].get_label("ner").value76    # now delete the NER tags of "Humboldt-Universität zu Berlin"77    sentence[0:4].remove_labels("ner")78    # should be only one NER label left79    labels: List[Label] = sentence.get_labels("ner")80    assert 1 == len(labels)81    assert "Berlin" == labels[0].data_point.text82    assert "City" == labels[0].value83    # and only one NER span84    spans: List[Span] = sentence.get_spans("ner")85    assert 1 == len(spans)86    assert "Berlin" == spans[0].text87    assert "City" == spans[0].get_label("ner").value88def test_different_span_tags():89    # set 3 labels for 2 spans (HU is tagged twice with different tags)90    sentence = Sentence("Humboldt Universität zu Berlin is located in Berlin .")91    sentence[0:4].add_label("ner", "Organization")92    sentence[0:4].add_label("orgtype", "University")93    sentence[7:8].add_label("ner", "City")94    # check if there are three labels with correct text and values95    labels: List[Label] = sentence.get_labels("ner")96    assert 2 == len(labels)97    assert "Humboldt Universität zu Berlin" == labels[0].data_point.text98    assert "Organization" == labels[0].value99    assert "Berlin" == labels[1].data_point.text100    assert "City" == labels[1].value101    # check if there are two spans with correct text and values102    spans: List[Span] = sentence.get_spans("ner")103    assert 2 == len(spans)104    assert "Humboldt Universität zu Berlin" == spans[0].text105    assert "Organization" == spans[0].get_label("ner").value106    assert "University" == spans[0].get_label("orgtype").value107    assert 1 == len(spans[0].get_labels("ner"))108    assert "Berlin" == spans[1].text109    assert "City" == spans[1].get_label("ner").value110    # now delete the NER tags of "Humboldt-Universität zu Berlin"111    sentence[0:4].remove_labels("ner")112    # should be only one NER label left113    labels: List[Label] = sentence.get_labels("ner")114    assert 1 == len(labels)115    assert "Berlin" == labels[0].data_point.text116    assert "City" == labels[0].value117    # and only one NER span118    spans: List[Span] = sentence.get_spans("ner")119    assert 1 == len(spans)120    assert "Berlin" == spans[0].text121    assert "City" == spans[0].get_label("ner").value122    # but there is also one orgtype span and label123    labels: List[Label] = sentence.get_labels("orgtype")124    assert 1 == len(labels)125    assert "Humboldt Universität zu Berlin" == labels[0].data_point.text126    assert "University" == labels[0].value127    # and only one NER span128    spans: List[Span] = sentence.get_spans("orgtype")129    assert 1 == len(spans)130    assert "Humboldt Universität zu Berlin" == spans[0].text131    assert "University" == spans[0].get_label("orgtype").value132    # let's add the NER tag back133    sentence[0:4].add_label("ner", "Organization")134    # check if there are three labels with correct text and values135    labels: List[Label] = sentence.get_labels("ner")136    print(labels)137    assert 2 == len(labels)138    assert "Humboldt Universität zu Berlin" == labels[0].data_point.text139    assert "Organization" == labels[0].value140    assert "Berlin" == labels[1].data_point.text141    assert "City" == labels[1].value142    # check if there are two spans with correct text and values143    spans: List[Span] = sentence.get_spans("ner")144    assert 2 == len(spans)145    assert "Humboldt Universität zu Berlin" == spans[0].text146    assert "Organization" == spans[0].get_label("ner").value147    assert "University" == spans[0].get_label("orgtype").value148    assert 1 == len(spans[0].get_labels("ner"))149    assert "Berlin" == spans[1].text150    assert "City" == spans[1].get_label("ner").value151    # now remove all NER tags152    sentence.remove_labels("ner")153    assert 0 == len(sentence.get_labels("ner"))154    assert 0 == len(sentence.get_spans("ner"))155    assert 1 == len(sentence.get_spans("orgtype"))156    assert 1 == len(sentence.get_labels("orgtype"))157    assert 1 == len(sentence.labels)158    assert 0 == len(sentence[0:4].get_labels("ner"))159    assert 1 == len(sentence[0:4].get_labels("orgtype"))160def test_relation_tags():161    # set 3 labels for 2 spans (HU is tagged twice with different tags)162    sentence = Sentence("Humboldt Universität zu Berlin is located in Berlin .")163    # create two relation label164    Relation(sentence[0:4], sentence[7:8]).add_label("rel", "located in")165    Relation(sentence[0:2], sentence[3:4]).add_label("rel", "university of")166    Relation(sentence[0:2], sentence[3:4]).add_label("syntactic", "apposition")167    # there should be two relation labels168    labels: List[Label] = sentence.get_labels("rel")169    assert 2 == len(labels)170    assert "located in" == labels[0].value171    assert "university of" == labels[1].value172    # there should be one syntactic labels173    labels: List[Label] = sentence.get_labels("syntactic")174    assert 1 == len(labels)175    # there should be two relations, one with two and one with one label176    relations: List[Relation] = sentence.get_relations("rel")177    assert 2 == len(relations)178    assert 1 == len(relations[0].labels)179    assert 2 == len(relations[1].labels)180def test_sentence_labels():181    # example sentence182    sentence = Sentence("I love Berlin")183    sentence.add_label("sentiment", "positive")184    sentence.add_label("topic", "travelling")185    assert 2 == len(sentence.labels)186    assert 1 == len(sentence.get_labels("sentiment"))187    assert 1 == len(sentence.get_labels("topic"))188    # add another topic label189    sentence.add_label("topic", "travelling")190    assert 3 == len(sentence.labels)191    assert 1 == len(sentence.get_labels("sentiment"))192    assert 2 == len(sentence.get_labels("topic"))193    sentence.remove_labels("topic")194    assert 1 == len(sentence.labels)195    assert 1 == len(sentence.get_labels("sentiment"))196    assert 0 == len(sentence.get_labels("topic"))197def test_mixed_labels():198    # example sentence199    sentence = Sentence("I love New York")200    # has sentiment value201    sentence.add_label("sentiment", "positive")202    # has 4 part of speech tags203    sentence[1].add_label("pos", "verb")204    sentence[2].add_label("pos", "proper noun")205    sentence[3].add_label("pos", "proper noun")206    sentence[0].add_label("pos", "pronoun")207    # has 1 NER tag208    sentence[2:4].add_label("ner", "City")209    # should be in total 6 labels210    assert 6 == len(sentence.labels)211    assert 4 == len(sentence.get_labels("pos"))212    assert 1 == len(sentence.get_labels("sentiment"))213    assert 1 == len(sentence.get_labels("ner"))214def test_data_point_equality():215    # example sentence216    sentence = Sentence("George Washington went to Washington .")217    # add two NER labels218    sentence[0:2].add_label("span_ner", "PER")219    sentence[0:2].add_label("span_other", "Politician")220    sentence[4].add_label("ner", "LOC")221    sentence[4].add_label("other", "Village")222    # get the four labels223    ner_label = sentence.get_label("ner")224    other_label = sentence.get_label("other")225    span_ner_label = sentence.get_label("span_ner")226    span_other_label = sentence.get_label("span_other")227    # check that only two of the respective data points are equal...pspeech_features.py
Source:pspeech_features.py  
...41from python_speech_features import ssc42import scipy.io.wavfile as wav43import os 44# get labels for later 45def get_labels(vector, label, label2):46    sample_list=list()47    for i in range(len(vector)):48        sample_list.append(label+str(i+1)+'_'+label2)49    return sample_list50def pspeech_featurize(file):51    # convert if .mp3 to .wav or it will fail 52    convert=False 53    if file[-4:]=='.mp3':54        convert=True 55        os.system('ffmpeg -i %s %s'%(file, file[0:-4]+'.wav'))56        file = file[0:-4] +'.wav'57    (rate,sig) = wav.read(file)58    mfcc_feat = mfcc(sig,rate)59    fbank_feat = logfbank(sig,rate)60    ssc_feat=ssc(sig, rate)61    one_=np.mean(mfcc_feat, axis=0)62    one=get_labels(one_, 'mfcc_', 'means')63    two_=np.std(mfcc_feat, axis=0)64    two=get_labels(one_, 'mfcc_', 'stds')65    three_=np.amax(mfcc_feat, axis=0)66    three=get_labels(one_, 'mfcc_', 'max')67    four_=np.amin(mfcc_feat, axis=0)68    four=get_labels(one_, 'mfcc_', 'min')69    five_=np.median(mfcc_feat, axis=0)70    five=get_labels(one_, 'mfcc_', 'medians')71    six_=np.mean(fbank_feat, axis=0)72    six=get_labels(six_, 'fbank_', 'means')73    seven_=np.mean(fbank_feat, axis=0)74    seven=get_labels(six_, 'fbank_', 'stds')75    eight_=np.mean(fbank_feat, axis=0)76    eight=get_labels(six_, 'fbank_', 'max')77    nine_=np.mean(fbank_feat, axis=0)78    nine=get_labels(six_, 'fbank_', 'min')79    ten_=np.mean(fbank_feat, axis=0)80    ten=get_labels(six_, 'fbank_', 'medians')81    eleven_=np.mean(ssc_feat, axis=0)82    eleven=get_labels(eleven_, 'spectral_centroid_', 'means')83    twelve_=np.mean(ssc_feat, axis=0)84    twelve=get_labels(eleven_, 'spectral_centroid_', 'stds')85    thirteen_=np.mean(ssc_feat, axis=0)86    thirteen=get_labels(eleven_, 'spectral_centroid_', 'max')87    fourteen_=np.mean(ssc_feat, axis=0)88    fourteen=get_labels(eleven_, 'spectral_centroid_', 'min')89    fifteen_=np.mean(ssc_feat, axis=0)90    fifteen=get_labels(eleven_, 'spectral_centroid_', 'medians')91    labels=one+two+three+four+five+six+seven+eight+nine+ten+eleven+twelve+thirteen+fourteen+fifteen92    features=np.append(one_,two_)93    features=np.append(features, three_)94    features=np.append(features, four_)95    features=np.append(features, five_)96    features=np.append(features, six_)97    features=np.append(features, seven_)98    features=np.append(features, eight_)99    features=np.append(features, nine_)100    features=np.append(features, ten_)101    features=np.append(features, eleven_)102    features=np.append(features, twelve_)103    features=np.append(features, thirteen_)104    features=np.append(features, fourteen_)...parse_predictions.py
Source:parse_predictions.py  
...16    import run_regression17  predicted_labels = []18  if task == "MRPC":19    #ids = MrpcProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/MRPC")20    labels = run_classifier.MrpcProcessor().get_labels()21  if task == "RTE":22    labels = run_classifier.RTEProcessor().get_labels()23  if task == "QNLI":24    labels = run_classifier.QNLIProcessor().get_labels()25  if task == "QNLIV2":26    labels = run_classifier.QNLIProcessor().get_labels()27  if task == "MNLI":28    labels = run_classifier.MnliProcessor().get_labels()29  if task == "SST2":30    labels = run_classifier.SST2Processor().get_labels()31  if task == "CoLA":32    labels = run_classifier.ColaProcessor().get_labels()33  if task == "QQP":34    labels = run_classifier.QQPProcessor().get_labels()35  if task == "diagnostic":36    labels = run_classifier.DiagnosticProcessor().get_labels()37  with codecs.open(input_path, "r", "utf8") as f_in:38    for line in f_in.readlines():39      predictions = np.array(line.split("\t"), dtype=np.float32)40      if task != "STSB":41        predicted_index = np.argmax(predictions)42        predicted_labels.append(labels[predicted_index])43      else:44        predicted_labels.append(predictions[0])45    f_in.close()46  with codecs.open(output_path, "w", "utf8") as f_out:47    f_out.write("index\tprediction\n")48    for i, prediction in enumerate(predicted_labels):49      f_out.write(str(i) + "\t" + str(prediction) + "\n")50    f_out.close()51def write_fake_predictions(output_path, task="MRPC"):52  """53  :param input_path:54  :param output_path:55  :param task:56  :return:57  >>> write_fake_predictions("/work/anlausch/replant/bert/predictions/base_32_5e-05_3.0/copy_for_submission/fakes/STS-B.tsv", task="STSB")58  """59  if task != "STSB":60    import run_classifier61  else:62    import run_regression63  if task == "MNLI":64    test_examples = run_classifier.MnliProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/" + task, False)65    labels = run_classifier.MnliProcessor().get_labels()66  elif task == "QQP":67    test_examples = run_classifier.QQPProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/" + task)68    labels = run_classifier.QQPProcessor().get_labels()69  elif task == "WNLI":70    test_examples = run_classifier.WNLIProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/" + task)71    labels = run_classifier.WNLIProcessor().get_labels()72  elif task == "CoLA":73    test_examples = run_classifier.ColaProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/" + task)74    labels = run_classifier.ColaProcessor().get_labels()75  elif task == "STSB":76    test_examples = run_regression.STSBProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/" + task)77  elif task == "diagnostic":78    test_examples = run_classifier.DiagnosticProcessor().get_test_examples(os.environ['GLUE_DIR'] + "/" + task)79    labels = run_classifier.DiagnosticProcessor().get_labels()80  with codecs.open(output_path, "w", "utf8") as f_out:81    f_out.write("index\tprediction\n")82    if task != "STSB":83      for i, data in enumerate(test_examples):84        f_out.write(str(i) + "\t" + str(labels[0]) + "\n")85    else:86      for i, data in enumerate(test_examples):87        f_out.write(str(i) + "\t" + str(2.5) + "\n")88    f_out.close()89def main():90  parser = argparse.ArgumentParser(description="Running prediction parser")91  parser.add_argument("--task", type=str, default=None,92                      help="Input path in case train and dev are in a single file", required=True)93  parser.add_argument("--input_path", type=str, default="/work/anlausch/replant/bert/predictions/wn_binary_32_5e-05_3.0/test_results.tsv",...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
