Best Python code snippet using autotest_python
d3_fr_unet.py
Source:d3_fr_unet.py  
1import torch2import torch.nn as nn3from models.utils import InitWeights4class conv(nn.Module):5    def __init__(self, in_c, out_c, dp=0):6        super(conv, self).__init__()7        self.in_c = in_c8        self.out_c = out_c9        self.conv = nn.Sequential(10            nn.Conv3d(out_c, out_c, kernel_size=3, padding=1, bias=False),11            nn.BatchNorm3d(out_c),12            nn.Dropout3d(dp),13            nn.LeakyReLU(0.1, inplace=True),14            nn.Conv3d(out_c, out_c, kernel_size=3, padding=1, bias=False),15            nn.BatchNorm3d(out_c),16            nn.Dropout3d(dp),17            nn.LeakyReLU(0.1, inplace=True))18        self.relu = nn.LeakyReLU(0.1, inplace=True)19    def forward(self, x):20        res = x21        x = self.conv(x)22        out = x + res23        out = self.relu(out)24        return x25class feature_fuse(nn.Module):26    def __init__(self, in_c, out_c):27        super(feature_fuse, self).__init__()28        self.conv11 = nn.Conv3d(29            in_c, out_c, kernel_size=1, padding=0, bias=False)30        self.conv33 = nn.Conv3d(31            in_c, out_c, kernel_size=3, padding=1, bias=False)32        self.conv33_di = nn.Conv3d(33            in_c, out_c, kernel_size=3, padding=2, bias=False, dilation=2)34        self.norm = nn.BatchNorm3d(out_c)35    def forward(self, x):36        x1 = self.conv11(x)37        x2 = self.conv33(x)38        x3 = self.conv33_di(x)39        out = self.norm(x1+x2+x3)40        return out41class up(nn.Module):42    def __init__(self, in_c, out_c, stride=[1, 2, 2]):43        super(up, self).__init__()44        self.up = nn.Sequential(45            nn.ConvTranspose3d(in_c, out_c, kernel_size=stride,46                               padding=0, stride=stride, bias=False),47            nn.BatchNorm3d(out_c),48            nn.LeakyReLU(0.1, inplace=False))49    def forward(self, x):50        x = self.up(x)51        return x52class down(nn.Module):53    def __init__(self, in_c, out_c, stride=[1, 2, 2]):54        super(down, self).__init__()55        self.down = nn.Sequential(56            nn.Conv3d(in_c, out_c, kernel_size=stride,57                      padding=0, stride=stride, bias=False),58            nn.BatchNorm3d(out_c),59            nn.LeakyReLU(0.1, inplace=True))60    def forward(self, x):61        x = self.down(x)62        return x63class block(nn.Module):64    def __init__(self, in_c, out_c,  dp=0, is_up=False, is_down=False, fuse=False):65        super(block, self).__init__()66        self.in_c = in_c67        self.out_c = out_c68        if fuse == True:69            self.fuse = feature_fuse(in_c, out_c)70        else:71            self.fuse = nn.Conv2d(in_c, out_c, kernel_size=1, stride=1)72        self.is_up = is_up73        self.is_down = is_down74        self.conv = conv(out_c, out_c, dp=dp)75        if self.is_up == True:76            self.up = up(out_c, out_c//2)77        if self.is_down == True:78            self.down = down(out_c, out_c*2)79    def forward(self,  x):80        if self.in_c != self.out_c:81            x = self.fuse(x)82        x = self.conv(x)83        if self.is_up == False and self.is_down == False:84            return x85        elif self.is_up == True and self.is_down == False:86            x_up = self.up(x)87            return x, x_up88        elif self.is_up == False and self.is_down == True:89            x_down = self.down(x)90            return x, x_down91        else:92            x_up = self.up(x)93            x_down = self.down(x)94            return x, x_up, x_down95class final_conv(nn.Module):96    def __init__(self, in_c, out_c) -> None:97        super().__init__()98        self.conv1 = nn.Conv3d(in_c, 1, kernel_size=1)99        self.conv2 = nn.Conv2d(8, out_c, kernel_size=1)100    def forward(self, x):101        x = self.conv1(x)102        x = self.conv2(x.squeeze(1))103        return x104class D3_FR_UNet(nn.Module):105    def __init__(self,  num_classes=1, num_channels=1, feature_scale=2,  dropout=0.2, fuse=True, out_ave=True):106        super(D3_FR_UNet, self).__init__()107        self.out_ave = out_ave108        filters = [64, 128, 256, 512, 1024]109        filters = [int(x / feature_scale) for x in filters]110        self.block1_3 = block(111            num_channels, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)112        self.block1_2 = block(113            filters[0], filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)114        self.block1_1 = block(115            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)116        self.block10 = block(117            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)118        self.block11 = block(119            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)120        self.block12 = block(121            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=False, fuse=fuse)122        self.block13 = block(123            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=False, fuse=fuse)124        self.block2_2 = block(125            filters[1], filters[1],  dp=dropout, is_up=True, is_down=True, fuse=fuse)126        self.block2_1 = block(127            filters[1]*2, filters[1],  dp=dropout, is_up=True, is_down=True, fuse=fuse)128        self.block20 = block(129            filters[1]*3, filters[1],  dp=dropout, is_up=True, is_down=True, fuse=fuse)130        self.block21 = block(131            filters[1]*3, filters[1],  dp=dropout, is_up=True, is_down=False, fuse=fuse)132        self.block22 = block(133            filters[1]*3, filters[1],  dp=dropout, is_up=True, is_down=False, fuse=fuse)134        self.block3_1 = block(135            filters[2], filters[2],  dp=dropout, is_up=True, is_down=True, fuse=fuse)136        self.block30 = block(137            filters[2]*2, filters[2],  dp=dropout, is_up=True, is_down=False, fuse=fuse)138        self.block31 = block(139            filters[2]*3, filters[2],  dp=dropout, is_up=True, is_down=False, fuse=fuse)140        self.block40 = block(filters[3], filters[3],141                             dp=dropout, is_up=True, is_down=False, fuse=fuse)142        self.final1 = final_conv(filters[0], num_classes)143        self.final2 = final_conv(filters[0], num_classes)144        self.final3 = final_conv(filters[0], num_classes)145        self.final4 = final_conv(filters[0], num_classes)146        self.final5 = final_conv(filters[0], num_classes)147        self.fuse = nn.Conv3d(5, num_classes, kernel_size=1, padding=0, bias=True)148        self.apply(InitWeights)149    def forward(self, x):150        x1_3, x_down1_3 = self.block1_3(x)151        x1_2, x_down1_2 = self.block1_2(x1_3)152        x2_2, x_up2_2, x_down2_2 = self.block2_2(x_down1_3)153        x1_1, x_down1_1 = self.block1_1(torch.cat([x1_2, x_up2_2], dim=1))154        x2_1, x_up2_1, x_down2_1 = self.block2_1(155            torch.cat([x_down1_2, x2_2], dim=1))156        x3_1, x_up3_1, x_down3_1 = self.block3_1(x_down2_2)157        x10, x_down10 = self.block10(torch.cat([x1_1, x_up2_1], dim=1))158        x20, x_up20, x_down20 = self.block20(159            torch.cat([x_down1_1, x2_1, x_up3_1], dim=1))160        x30, x_up30 = self.block30(torch.cat([x_down2_1, x3_1], dim=1))161        _, x_up40 = self.block40(x_down3_1)162        x11, x_down11 = self.block11(torch.cat([x10, x_up20], dim=1))163        x21, x_up21 = self.block21(torch.cat([x_down10, x20, x_up30], dim=1))164        _, x_up31 = self.block31(torch.cat([x_down20, x30, x_up40], dim=1))165        x12 = self.block12(torch.cat([x11, x_up21], dim=1))166        _, x_up22 = self.block22(torch.cat([x_down11, x21, x_up31], dim=1))167        x13 = self.block13(torch.cat([x12, x_up22], dim=1))168        if self.out_ave == True:169            output = (self.final1(x1_1)+self.final2(x10) +170                      self.final3(x11)+self.final4(x12)+self.final5(x13))/5171        else:172            output = self.final5(x13)...fr_unet.py
Source:fr_unet.py  
1import torch2import torch.nn as nn3from models.utils import InitWeights4class conv(nn.Module):5    def __init__(self, in_c, out_c, dp=0):6        super(conv, self).__init__()7        self.in_c = in_c8        self.out_c = out_c9        self.conv = nn.Sequential(10            nn.Conv2d(out_c, out_c, kernel_size=3, padding=1, bias=False),11            nn.BatchNorm2d(out_c),12            nn.Dropout2d(dp),13            nn.LeakyReLU(0.1, inplace=True),14            nn.Conv2d(out_c, out_c, kernel_size=3, padding=1, bias=False),15            nn.BatchNorm2d(out_c),16            nn.Dropout2d(dp),17            nn.LeakyReLU(0.1, inplace=True))18        self.relu = nn.LeakyReLU(0.1, inplace=True)19    def forward(self, x):20        res = x21        x = self.conv(x)22        out = x + res23        out = self.relu(out)24        return x25class feature_fuse(nn.Module):26    def __init__(self, in_c, out_c):27        super(feature_fuse, self).__init__()28        self.conv11 = nn.Conv2d(29            in_c, out_c, kernel_size=1, padding=0, bias=False)30        self.conv33 = nn.Conv2d(31            in_c, out_c, kernel_size=3, padding=1, bias=False)32        self.conv33_di = nn.Conv2d(33            in_c, out_c, kernel_size=3, padding=2, bias=False, dilation=2)34        self.norm = nn.BatchNorm2d(out_c)35    def forward(self, x):36        x1 = self.conv11(x)37        x2 = self.conv33(x)38        x3 = self.conv33_di(x)39        out = self.norm(x1+x2+x3)40        return out41class up(nn.Module):42    def __init__(self, in_c, out_c, dp=0):43        super(up, self).__init__()44        self.up = nn.Sequential(45            nn.ConvTranspose2d(in_c, out_c, kernel_size=2,46                               padding=0, stride=2, bias=False),47            nn.BatchNorm2d(out_c),48            nn.LeakyReLU(0.1, inplace=False))49    def forward(self, x):50        x = self.up(x)51        return x52class down(nn.Module):53    def __init__(self, in_c, out_c, dp=0):54        super(down, self).__init__()55        self.down = nn.Sequential(56            nn.Conv2d(in_c, out_c, kernel_size=2,57                      padding=0, stride=2, bias=False),58            nn.BatchNorm2d(out_c),59            nn.LeakyReLU(0.1, inplace=True))60    def forward(self, x):61        x = self.down(x)62        return x63class block(nn.Module):64    def __init__(self, in_c, out_c,  dp=0, is_up=False, is_down=False, fuse=False):65        super(block, self).__init__()66        self.in_c = in_c67        self.out_c = out_c68        if fuse == True:69            self.fuse = feature_fuse(in_c, out_c)70        else:71            self.fuse = nn.Conv2d(in_c, out_c, kernel_size=1, stride=1)72        self.is_up = is_up73        self.is_down = is_down74        self.conv = conv(out_c, out_c, dp=dp)75        if self.is_up == True:76            self.up = up(out_c, out_c//2)77        if self.is_down == True:78            self.down = down(out_c, out_c*2)79    def forward(self,  x):80        if self.in_c != self.out_c:81            x = self.fuse(x)82        x = self.conv(x)83        if self.is_up == False and self.is_down == False:84            return x85        elif self.is_up == True and self.is_down == False:86            x_up = self.up(x)87            return x, x_up88        elif self.is_up == False and self.is_down == True:89            x_down = self.down(x)90            return x, x_down91        else:92            x_up = self.up(x)93            x_down = self.down(x)94            return x, x_up, x_down95class FR_UNet(nn.Module):96    def __init__(self,  num_classes=1, num_channels=1, feature_scale=2,  dropout=0.1, fuse=True, out_ave=True):97        super(FR_UNet, self).__init__()98        self.out_ave = out_ave99        filters = [64, 128, 256, 512, 1024]100        filters = [int(x / feature_scale) for x in filters]101        self.block1_3 = block(102            num_channels, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)103        self.block1_2 = block(104            filters[0], filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)105        self.block1_1 = block(106            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)107        self.block10 = block(108            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)109        self.block11 = block(110            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=True, fuse=fuse)111        self.block12 = block(112            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=False, fuse=fuse)113        self.block13 = block(114            filters[0]*2, filters[0],  dp=dropout, is_up=False, is_down=False, fuse=fuse)115        self.block2_2 = block(116            filters[1], filters[1],  dp=dropout, is_up=True, is_down=True, fuse=fuse)117        self.block2_1 = block(118            filters[1]*2, filters[1],  dp=dropout, is_up=True, is_down=True, fuse=fuse)119        self.block20 = block(120            filters[1]*3, filters[1],  dp=dropout, is_up=True, is_down=True, fuse=fuse)121        self.block21 = block(122            filters[1]*3, filters[1],  dp=dropout, is_up=True, is_down=False, fuse=fuse)123        self.block22 = block(124            filters[1]*3, filters[1],  dp=dropout, is_up=True, is_down=False, fuse=fuse)125        self.block3_1 = block(126            filters[2], filters[2],  dp=dropout, is_up=True, is_down=True, fuse=fuse)127        self.block30 = block(128            filters[2]*2, filters[2],  dp=dropout, is_up=True, is_down=False, fuse=fuse)129        self.block31 = block(130            filters[2]*3, filters[2],  dp=dropout, is_up=True, is_down=False, fuse=fuse)131        self.block40 = block(filters[3], filters[3],132                             dp=dropout, is_up=True, is_down=False, fuse=fuse)133        self.final1 = nn.Conv2d(134            filters[0], num_classes, kernel_size=1, padding=0, bias=True)135        self.final2 = nn.Conv2d(136            filters[0], num_classes, kernel_size=1, padding=0, bias=True)137        self.final3 = nn.Conv2d(138            filters[0], num_classes, kernel_size=1, padding=0, bias=True)139        self.final4 = nn.Conv2d(140            filters[0], num_classes, kernel_size=1, padding=0, bias=True)141        self.final5 = nn.Conv2d(142            filters[0], num_classes, kernel_size=1, padding=0, bias=True)143        self.fuse = nn.Conv2d(144            5, num_classes, kernel_size=1, padding=0, bias=True)145        self.apply(InitWeights)146    def forward(self, x):147        x1_3, x_down1_3 = self.block1_3(x)148        x1_2, x_down1_2 = self.block1_2(x1_3)149        x2_2, x_up2_2, x_down2_2 = self.block2_2(x_down1_3)150        x1_1, x_down1_1 = self.block1_1(torch.cat([x1_2, x_up2_2], dim=1))151        x2_1, x_up2_1, x_down2_1 = self.block2_1(152            torch.cat([x_down1_2, x2_2], dim=1))153        x3_1, x_up3_1, x_down3_1 = self.block3_1(x_down2_2)154        x10, x_down10 = self.block10(torch.cat([x1_1, x_up2_1], dim=1))155        x20, x_up20, x_down20 = self.block20(156            torch.cat([x_down1_1, x2_1, x_up3_1], dim=1))157        x30, x_up30 = self.block30(torch.cat([x_down2_1, x3_1], dim=1))158        _, x_up40 = self.block40(x_down3_1)159        x11, x_down11 = self.block11(torch.cat([x10, x_up20], dim=1))160        x21, x_up21 = self.block21(torch.cat([x_down10, x20, x_up30], dim=1))161        _, x_up31 = self.block31(torch.cat([x_down20, x30, x_up40], dim=1))162        x12 = self.block12(torch.cat([x11, x_up21], dim=1))163        _, x_up22 = self.block22(torch.cat([x_down11, x21, x_up31], dim=1))164        x13 = self.block13(torch.cat([x12, x_up22], dim=1))165        if self.out_ave == True:166            output = (self.final1(x1_1)+self.final2(x10) +167                      self.final3(x11)+self.final4(x12)+self.final5(x13))/5168        else:169            output = self.final5(x13)...test_servicegroup.py
Source:test_servicegroup.py  
...27    def test_service_is_up_forced_down(self):28        kwarg = {'forced_down': True}29        magnum_object = obj_util.get_test_magnum_service_object(30            self.context, **kwarg)31        is_up = self.servicegroup_api.service_is_up(magnum_object)32        self.assertFalse(is_up)33    def test_service_is_up_alive(self):34        kwarg = {'last_seen_up': timeutils.utcnow(True)}35        magnum_object = obj_util.get_test_magnum_service_object(36            self.context, **kwarg)37        is_up = self.servicegroup_api.service_is_up(magnum_object)38        self.assertTrue(is_up)39    def test_service_is_up_alive_with_created(self):40        kwarg = {'created_at': timeutils.utcnow(True)}41        magnum_object = obj_util.get_test_magnum_service_object(42            self.context, **kwarg)43        is_up = self.servicegroup_api.service_is_up(magnum_object)44        self.assertTrue(is_up)45    def test_service_is_up_alive_with_updated(self):46        kwarg = {'updated_at': timeutils.utcnow(True)}47        magnum_object = obj_util.get_test_magnum_service_object(48            self.context, **kwarg)49        is_up = self.servicegroup_api.service_is_up(magnum_object)50        self.assertTrue(is_up)51    def test_service_is_up_alive_with_all_three(self):52        kwarg = {'created_at': timeutils.utcnow(True),53                 'updated_at': timeutils.utcnow(True),54                 'last_seen_up': timeutils.utcnow(True)}55        magnum_object = obj_util.get_test_magnum_service_object(56            self.context, **kwarg)57        is_up = self.servicegroup_api.service_is_up(magnum_object)58        self.assertTrue(is_up)59    def test_service_is_up_alive_with_latest_update(self):60        kwarg = {'created_at': datetime.datetime(1970, 1, 1,61                                                 tzinfo=pytz.UTC),62                 'updated_at': datetime.datetime(1970, 1, 1,63                                                 tzinfo=pytz.UTC),64                 'last_seen_up': timeutils.utcnow(True)}65        magnum_object = obj_util.get_test_magnum_service_object(66            self.context, **kwarg)67        is_up = self.servicegroup_api.service_is_up(magnum_object)68        self.assertTrue(is_up)69    def test_service_is_up_down(self):70        kwarg = {'last_seen_up': datetime.datetime(1970, 1, 1,71                                                   tzinfo=pytz.UTC)}72        magnum_object = obj_util.get_test_magnum_service_object(73            self.context, **kwarg)74        is_up = self.servicegroup_api.service_is_up(magnum_object)75        self.assertFalse(is_up)76    def test_service_is_up_down_with_create(self):77        kwarg = {'created_at': datetime.datetime(1970, 1, 1,78                                                 tzinfo=pytz.UTC)}79        magnum_object = obj_util.get_test_magnum_service_object(80            self.context, **kwarg)81        is_up = self.servicegroup_api.service_is_up(magnum_object)82        self.assertFalse(is_up)83    def test_service_is_up_down_with_update(self):84        kwarg = {'updated_at': datetime.datetime(1970, 1, 1,85                                                 tzinfo=pytz.UTC)}86        magnum_object = obj_util.get_test_magnum_service_object(87            self.context, **kwarg)88        is_up = self.servicegroup_api.service_is_up(magnum_object)89        self.assertFalse(is_up)90    def test_service_is_up_down_with_all_three(self):91        kwarg = {'last_seen_up': datetime.datetime(1970, 1, 1,92                                                   tzinfo=pytz.UTC),93                 'created_at': datetime.datetime(1970, 1, 1,94                                                 tzinfo=pytz.UTC),95                 'updated_at': datetime.datetime(1970, 1, 1,96                                                 tzinfo=pytz.UTC)}97        magnum_object = obj_util.get_test_magnum_service_object(98            self.context, **kwarg)99        is_up = self.servicegroup_api.service_is_up(magnum_object)100        self.assertFalse(is_up)101    def test_service_is_up_down_with_old_update(self):102        kwarg = {'last_seen_up': datetime.datetime(1970, 1, 1,103                                                   tzinfo=pytz.UTC),104                 'created_at': timeutils.utcnow(True),105                 'updated_at': timeutils.utcnow(True)}106        magnum_object = obj_util.get_test_magnum_service_object(107            self.context, **kwarg)108        is_up = self.servicegroup_api.service_is_up(magnum_object)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
