Best Python code snippet using autotest_python
test_stake_part.py
Source:test_stake_part.py  
...77        key = StakePart.make_key(create_address(1))78        self.assertEqual(ICON_CONTRACT_ADDRESS_BYTES_SIZE + len(StakePart.PREFIX), len(key))79    def test_stake_part_stake(self):80        part = StakePart()81        part.set_complete(True)82        self.assertEqual(0, part.stake)83    def test_stake_part_stake_overflow(self):84        part = StakePart()85        with self.assertRaises(Exception) as e:86            self.assertEqual(0, part.stake)87        self.assertEqual(AssertionError, type(e.exception))88    def test_stake_part_voting_weight(self):89        stake = 1090        part = StakePart(stake=stake)91        part.set_complete(True)92        self.assertEqual(stake, part.voting_weight)93    def test_stake_part_voting_weight_overflow(self):94        part = StakePart()95        with self.assertRaises(Exception) as e:96            self.assertEqual(0, part.voting_weight)97        self.assertEqual(AssertionError, type(e.exception))98    def test_stake_part_unstake(self):99        unstake = 10100        part = StakePart(unstake=unstake)101        part.set_complete(True)102        self.assertEqual(unstake, part.unstake)103    def test_stake_part_unstake_overflow(self):104        part = StakePart()105        with self.assertRaises(Exception) as e:106            self.assertEqual(0, part.unstake)107        self.assertEqual(AssertionError, type(e.exception))108    def test_stake_part_unstake_block_height(self):109        unstake_block_height = 10110        part = StakePart(unstake_block_height=unstake_block_height)111        part.set_complete(True)112        self.assertEqual(unstake_block_height, part.unstake_block_height)113    def test_stake_part_unstake_block_height_overflow(self):114        part = StakePart()115        with self.assertRaises(Exception) as e:116            self.assertEqual(0, part.unstake_block_height)117        self.assertEqual(AssertionError, type(e.exception))118    def test_stake_part_total_stake(self):119        stake = 10120        unstake = 20121        part = StakePart(stake=stake, unstake=unstake)122        part.set_complete(True)123        self.assertEqual(stake+unstake, part.total_stake)124    def test_stake_part_total_stake_overflow(self):125        part = StakePart()126        with self.assertRaises(Exception) as e:127            self.assertEqual(0, part.total_stake)128        self.assertEqual(AssertionError, type(e.exception))129    def test_stake_part_add_stake(self):130        part = StakePart()131        part.set_complete(True)132        stake = 100133        part.add_stake(100)134        self.assertEqual(stake, part.stake)135        self.assertTrue(part.is_set(BasePartState.DIRTY | BasePartState.COMPLETE))136    def test_stake_part_set_unstake_update(self):137        part = StakePart()138        part.set_complete(True)139        stake = 100140        block_height = 10141        part.add_stake(100)142        unstake = stake143        part.set_unstake(block_height, unstake)144        self.assertEqual(0, part.stake)145        self.assertEqual(stake, part.unstake)146        self.assertEqual(block_height, part.unstake_block_height)147        self.assertTrue(part.is_set(BasePartState.DIRTY | BasePartState.COMPLETE))148        block_height += block_height149        unstake = 10150        part.set_unstake(block_height, unstake)151        self.assertEqual(stake - unstake, part.stake)152        self.assertEqual(unstake, part.unstake)...defs.py
Source:defs.py  
1import glob2import numpy as np3import tensorflow as tf4import keras5from numpy.random import default_rng6from keras import backend as K7def get_data(train_path, test_path, train_mean, test_mean):8    beginning = 19    actionTrainFolder = sorted(glob.glob(train_path + "train/*/"))10    for ins_e, ins in enumerate(actionTrainFolder):11        instanceFolder = sorted(glob.glob(ins + "*/"))12        for cla_e, cla in enumerate(instanceFolder):13            classFolder = sorted(glob.glob(cla + "/*.png"))14            for img_e, img in enumerate(classFolder):15                tensor = tf.io.read_file(img)16                print(img)17                tensor = tf.io.decode_image(tensor, dtype=tf.dtypes.uint8)18                tensor = tf.image.convert_image_dtype(tensor, tf.float32)19                if beginning == 1:20                    img_w,img_h,img_d = tensor.shape21                    train_cla_n = len(instanceFolder)22                    train_img_n = len(classFolder)23                    train_set = np.zeros((len(actionTrainFolder) ,len(instanceFolder) ,len(classFolder), img_w, img_h, 1), dtype = 'float32')               24                    beginning = 025                train_set[ins_e,cla_e,img_e,:,:,:] = tensor26    beginning = 127    actionTestFolder = sorted(glob.glob(test_path + "test/*/"))28    for ins_e, ins in enumerate(actionTestFolder):29        instanceFolder = sorted(glob.glob(ins + "*/"))30        for cla_e, cla in enumerate(instanceFolder):31            classFolder = sorted(glob.glob(cla + "/*.png"))32            for img_e, img in enumerate(classFolder):33                tensor = tf.io.read_file(img)34                print(img)35                tensor = tf.io.decode_image(tensor, dtype=tf.dtypes.uint8)36                tensor = tf.image.convert_image_dtype(tensor, tf.float32)37                if beginning == 1:38                    test_cla_n = len(instanceFolder)39                    test_set = np.zeros((len(actionTestFolder) ,len(instanceFolder) ,len(classFolder), img_w, img_h, 1), dtype = 'float32')               40                    beginning = 041                test_set[ins_e,cla_e,img_e,:,:,:] = tensor42    if train_mean == True:43        train_set = np.mean(train_set, axis=(2), keepdims=True)44    if test_mean == True:45        test_set = np.mean(test_set, axis=(2), keepdims=True)46    return img_w, img_h, train_cla_n, test_cla_n, train_img_n, train_set, test_set47def get_r_val(train_path, test_path, train_cla_n, test_cla_n):48    r_train = np.array([])49    r_test = np.array([])50    51    beginning = 152    actionFolder = sorted(glob.glob(train_path + "train/*/"))53    54    for ins_e, ins in enumerate(actionFolder):55        print(ins)56        instanceFolder = sorted(glob.glob(ins + "*.npy"))57        for r_e, r in enumerate(instanceFolder):58            print(r)59            r_act = np.load(r)60            if beginning == 1:61                r_shape = r_act.shape62                r_train = np.zeros((train_cla_n, r_shape[0], r_shape[1], 1))63                r_train[r_e,:,:,:] = r_act64                beginning = 065            else :66                r_train[r_e,:,:,:] = r_act67    68    beginning = 169    actionFolder = sorted(glob.glob(test_path + "test/*/"))70    71    for ins_e, ins in enumerate(actionFolder):72        print(ins)73        instanceFolder = sorted(glob.glob(ins + "*.npy"))74        for r_e, r in enumerate(instanceFolder):75            print(r)76            r_act = np.load(r)77            if beginning == 1:78                r_shape = r_act.shape79                r_test = np.zeros((test_cla_n, r_shape[0], r_shape[1], 1))80                r_test[r_e,:,:,:] = r_act81                beginning = 082            else :83                r_test[r_e,:,:,:] = r_act84    return r_train, r_test85def make_epoch(set_complete):86    ins_e,cla_e,img_e,img_h,img_w,img_d=set_complete.shape87    cla_rand = np.zeros(cla_e)88    img_rand = np.zeros(img_e)89    rng = default_rng()90    91    cla_rand[:] = rng.choice(cla_e, size=cla_e, replace=False)92    img_rand[:] = rng.choice(img_e, size=img_e, replace=False)93    cla_rang = np.tile(cla_rand,img_e)94    img_rang = np.repeat(img_rand, cla_e)95    cla_iter = iter(cla_rang)96    img_iter = iter(img_rang)97    return cla_iter, img_iter , cla_rang, img_rang98def make_batch(set_complete, cla_iter, img_iter, batch_size, r_train, r_max):99    ins_e,cla_e,img_e,img_h,img_w,img_d=set_complete.shape100    r_batch = np.zeros((batch_size,img_h,img_w,img_d),dtype='float32')101    input_batch = np.zeros((batch_size,img_h,img_w,img_d),dtype='float32')102    ground_batch = np.zeros((batch_size,img_h,img_w,img_d),dtype='float32')103    for i in range(batch_size):104        cla_pick = next(cla_iter, None)105        img_pick = next(img_iter, None)106        if cla_pick == None or img_pick == None:107            break108        r_batch[i,:,:,:] = r_train[int(cla_pick), :,:,:]109        input_batch[i,:,:,:] = set_complete[0,int(cla_pick),int(img_pick),:,:,:]        110        ground_batch[i,:,:,:] = set_complete[1,int(cla_pick),int(img_pick),:,:,:]111    input_batch = input_batch * r_batch/r_max112    ground_batch = ground_batch * r_batch/r_max113    return input_batch, ground_batch, r_batch114def custom_loss(r, img_w, img_h, r_max):115    img_w = K.constant(img_w)116    img_h = K.constant(img_h)117    r_max = K.constant(r_max)118    def loss(y_true, y_pred):119        loss_value = K.sum((K.abs(y_pred - y_true)))/(img_w * img_h)120        return loss_value121    return loss122def dist(a, b, IM_SIZE, r_max):123    z_diff = 50 #mm...admin.py
Source:admin.py  
...80        'set_shipped',81        'set_delivered',82    )83    def set_complete_delivered(self, request, queryset):84        self.set_complete(request, queryset)85        self.set_delivered(request, queryset)86    set_complete_delivered.short_description = 'Mark selected orders as complete and delivered today'87    def set_complete(self, request, queryset):88        queryset.update(complete=True)89        self.set_delivered(request, queryset)90    set_complete.short_description = 'Mark selected orders as complete'91    def set_incomplete(self, request, queryset):92        queryset.update(complete=False)93    set_incomplete.short_description = 'Mark selected orders as incomplete'94    def set_shipped(self, request, queryset):95        queryset.filter(shipping_date=None).update(shipping_date=date.today())96    set_shipped.short_description = 'Mark selected orders as shipped today'97    def set_delivered(self, request, queryset):98        queryset.filter(delivery_date=None).update(delivery_date=date.today())99    set_delivered.short_description = 'Mark selected orders as delivered today'100    def make_state_action(self, state):101        name   = 'set_state_{0}'.format(state.state)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
